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If a spinning particle
is not quite a point
particle, nor a solid

three dimensional top,
what can it be?

A. O. Barut

Eppure si muove . . .
(the electron)
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Introduction

After the success of Dirac’s equation the electron spin was considered
for years as a strict relativistic and quantum mechanical property, with-
out a classical counterpart. This is what one basically reads in some ex-
cellent textbooks, mainly written by the mid 20 th century. The recently
re-edited book ‘The Story of Spin’ by Tomonaga, who reviews the main
discoveries during a period of 40 years, is not an exception. But, never-
theless, one often reads in other textbooks and research works statements
which mention that the spin is neither relativistic nor a quantum me-
chanical property of the electron, and that a classical interpretation is
also possible, giving some answers to this subject. The literature about
it, not so extensive as the quantum one, is important.

One of the challenges while writing this book was to give an answer to
Professor Barut’s quotation, in the preliminary pages. Is it possible to
give a comprehensive description, let us say at an undergraduate level,
of an elementary particle in the form of what one usually thinks should
be the description of a rotating small object? The partial qualitative
answer is contained in the other preceding quotation, that, according to
some not well confirmed Legend, was pronounced sotto voce by Galileo
Galilei at the end of his Inquisition trial. In that case this statement was
related to Earth’s motion. But the electron also moves and the classical
description of this motion is what we have been looking for.

The present book is an attempt to produce a classical, and also a quan-
tum mechanical, description of spin and the related properties inherent
to it such as the so called zitterbewegung and the associated intrinsic
dipole structure of elementary particles. The relationship between the
classical and the quantum mechanical description of spin will show how
both formalisms are able to complement each other, thus producing, for
instance, a kinematical explanation of the gyromagnetic ratio of leptons
and charged W ± bosons.

xix



xx KINEMATICAL THEORY OF SPINNING PARTICLES

But at the same time, this book also presents a new formalism, based
upon group theory, to describe elementary particles from a classical and
quantum point of view. In this way the structure of an elementary parti-
cle is basically related to the kinematical group of space-time transforma-
tions that implements the Special Relativity Principle. It is within the
kinematical group where we have to look for the independent variables
to describe an elementary object. This relationship has been sought for
years and has produced a lot of literature, but is so intimate that it has
not been unveiled yet, unfortunately.

tary particles. Nevertheless, those readers with low group theoretical

The book is organized as follows. The first chapter contains the ba-
sic definitions and general Lagrangian formalism for dealing with clas-
sical elementary particles, and also a precise mathematical definition
of elementary particle is given. Some group theoretical background is
necessary to properly understand the intimate connection between the
concept of elementarity and the kinematical group of symmetries. This
is why we have entitled the book as a kinematical th eory of elemen-

baggage, will be acquainted with it after the analysis of the first mod-
els. A careful reading of the last section of this chapter shows how the
formalism works with the simplest kinematical groups, preparing the
ground for further theoretical analysis for larger symmetry groups. This
is what is done in Chapters 2 and 3, which are devoted to the analysis of
non-relativistic and relativistic classical particles. There we consider as
the basic symmetry group, the Galilei and Poincaré group, respectively.
Different models are explored thus showing how the spin arises when
compared with the point particle case.

Chapter 4 takes the challenge of quantizing the previously developed
models. This task is accomplished by means of Feynman’s path integral
approach, because the classical formalism has a well-defined Lagrangian,
written in terms of the end-point variables of the variational approach.
It is shown how the usual one-particle wave equations can be obtained,
by using the methods of standard quantum mechanics, after the choice
of the appropriate complete commuting set of operators. These opera-
tors are obtained from the algebra produced by the set of generators of
the kinematical group in the corresponding irreducible representation.
It is fairly simple to get Dirac’s equation, once we identify the different
classical observables with their quantum equivalent. One of the salient
features is the determination of the kind of classical systems that, ac-
cording to the classical spin structure, quantize either with integer or
half integer values.

I have included in Chapter 5 several alternative models of classical
spinning particles, taken from the literature, by several authors. It is
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a collection of models, which in general cannot be found in textbooks,
although some of them were published as research articles even before
Dirac’s theory of the electron. This review is far from being complete
but it comprehends most of the models quoted in the literature of this
subject. They are discussed in connection with those models obtained
from our formalism to show the scope of the different approaches. My
apologies for not being as exhaustive as desirable.

The last chapter is devoted to some features, either classical or quan-
tum mechanical, that can be explained because of the spin structure of
the particles. It is only a sample to show how, by applying the formalism
to some particular problems in which spin plays a role, we can obtain an
alternative interpretation that gives a new perspective to old matters.

The subject of the book is already at a seminal level and now needs
a deeper improvement. For some readers the contents of the following
pages will be considered as a pure academic exercise but, even in this
case, it opens new fields of research. If after reading these chapters
you have a new view and conceptual ideas concerning particle physics,
I will take for granted the time and effort I enjoyed in producing this
manuscript. Your criticism will always be welcome.

Martín Rivas

Bilbao, June 2000
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Chapter 1

GENERAL FORMALISM

This chapter is devoted to general considerations about kinematics
and dynamics and the differences between Newtonian dynamics and
variational formalism when the mechanical system is a spinning par-
ticle. These considerations lead us in a quite natural way to work in
a Lagrangian formalism in which Lagrangians depend on higher order
derivatives. The advantage is that we shall work in a classical formal-
ism closer to the quantum one, as far as kinematics and dynamics are
concerned. We shall develop the main items such as Euler-Lagrange
equations, Noether’s theorem and canonical formalism in explicit form.
The concept of the action of Lie groups on manifolds will be introduced
to be used for describing symmetry principles in subsequent chapters
for both relativistic and nonrelativistic systems. In particular we shall
express the variational problem not only in terms of the independent
degrees of freedom, but also as a function of the end point variables of
the corresponding action integral. We shall call these variables the kine-
matical variables of the system. The formalism in terms of kinematical
variables proves to be the natural link between classical and quantum
mechanics when considered under Feynman’s quantization method. It is
in terms of the kinematical variables that a group theoretical definition
of a classical elementary particle will be stated.

1.  INTRODUCTION
Historically quantum mechanics has been derived from classical me-

chanics either as a wave mechanics or by means of a canonical com-
mutation relation formalism or using the recipes of the so-called ‘corre-
spondence principle’. Today we know that none of these formalisms are
necessary to quantize a system.

1
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Axiomatic quantum mechanics and the algebraic approach show that
it is possible to construct a quantum mechanical formalism without any
reference to a previous classical model. But nevertheless, to produce a
detailed quantum mechanical analysis of a concrete experiment we need
to work within a particular and specific representation of the C*-algebra
of observables, i.e., we need to define properly the Hilbert space of pure
states H, to obtain the mathematical representation of the fundamental
observables either as matrix, integral or differential operators. In general
H is a space of complex squared integrable functions (X ), defined on
a manifold X, in which some measure dµ(x) is introduced to work out
the corresponding Hermitian scalar product. But all infinite-dimensional
separable Hilbert spaces are isomorphic and it turns out that the selec-
tion of the manifold X and the measure dµ(x) is important to show the
detailed mathematical structure of the different observables we want to
work with.

For instance, on the Hilbert space it is difficult to define the
angular momentum observable J. We need at least a Hilbert space of the
form although isomorphic to the previous one, to obtain a non-
trivial representation of the angular momentum operator
This implies that the support of the wave-functions must be a three-
dimensional manifold or that the basic object we are describing is
at least a point moving in three-dimensional space. It is nonsense from
the physical point of view to define the angular momentum of a point
moving in a one-dimensional universe. But this election of the manifold

is dictated by the classical awareness we have about the object we
want to describe. Classical mechanics, if properly developed, can help
to display the quantum mechanical machinery.

Newtonian mechanics is based upon the hypothesis that the basic
object of matter is a point, with the property of having mass m and
spin zero. Point dynamics is described by Newton’s second law. It
supplies in general differential equations for the position of the point
and is expressed in terms of the external forces. Larger bodies and
material systems are built from these massive and spinless points, and
taking into account the constraints and interactions among the different
parts of the system, we are able to derive the dynamics of the essential
and independent degrees of freedom of any compound system of spinless
particles.

Now, let us assume that we have a time-machine and we jump back to
Newton’s times, we meet him and say: ‘Sir, according to the knowledge
we have in the future where we come from, elementary objects of nature
have spin, in addition to mass m, as a separate intrinsic property. What
can we do to describe matter?’ Probably he will add some extra degrees
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of freedom to the massive point particle and some plausible dynamical
equation for the spin evolution in terms of external torques. The com-
pound systems of spinning particles will become more complex mainly
due to the additional degrees of freedom and perhaps because of the en-
tanglement of the new variables with the old ones. Then, coming back to
the beginning of our century, when facing the early steps in the dawn of
quantum mechanics, it is not difficult to think that the quantization of
this more complex classical background will produce a different quantum
scenario in which for instance, the spin description would inherit some
of the peculiarities of the additional classical variables Newton would
have used.

With this preamble, what we want to emphasize is that if we are able
to obtain a classical description of spin, then, based upon this picture,
we shall produce a different quantization of the model. Going further,
if we succeed in describing spin at the classical level we can accept the
challenge to describe more and more intrinsic properties from the clas-
sical viewpoint. For instance if we want to describe hadronic matter,
in addition to spin we have to describe isospin, hypercharge and many
other internal properties. For this challenge, we have not only to enlarge
the classical degrees of freedom, we also need to establish properly the
basic group of kinematical symmetries and also to delve deeper into a
plausible geometrical interpretation of the new variables the formalism
provides. Probably we shall need more fundamental principles for the
new variables that can go beyond our conception of space-time. Whether
or not the new variables get an easy interpretation as internal or space-
time variables, it is clear that the formalism must be based on invariance
principles.

But the classical goal is not important in itself. Nature, at the scale
of elementary interactions, behaves according to the laws of quantum
mechanics. The finer the classical analysis of basic objects of matter,
the richer will be their quantum mechanical description. The quan-
tum mechanical picture when expressed in terms of invariance principles
will show the relationship between the classical variables and symmetry
group parameters of the manifolds involved. This is our main motiva-
tion for the classical analysis of spinning particles: to finally obtain a
thorough quantum scheme.

1.1 KINEMATICS AND DYNAMICS

When facing the project of getting a classical description of matter
we have the recent history of Physics on our back. And, although we
have a huge classical luggage, a glance at the successful way quantum
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mechanics describes both kinematics and dynamics may help us to devise
the formalism.

By kinematics we understand the basic statements that define the
physical objects we go to work with. In quantum mechanics, the neces-
sary condition for a particle to be considered elementary is based upon
group theoretical arguments, related to very general symmetry state-
ments. It is related to the irreducibility of the representation of what is
called the kinematical group of space-time transformations and to the
so-called internal symmetries group. It is usually called to work ‘à la
Wigner’. 1 Intrinsic attributes are then interpreted in terms of the group
invariants. We shall also try to derive the basic kinematical ingredients
of the classical formalism by group theoretical methods.

Quantum dynamics, in the form of either S-matrix theory, scattering
formalism, Wightman’s functional method or Feynman’s path integral
approach, finally describes the probability amplitudes for the whole pro-
cess in terms of the end point kinematical variables that characterize the
initial and final states of the system. The details concerning the inter-
mediate flight of the particles involved, are not explicit in the final form
of the result. They are all removed, enhancing the role, as far as the
theoretical analysis is concerned, of the initial and final data. Basically
it is an input-output formalism.

Therefore the aim of the classical approach we propose, similar to
the quantum case, is to first establish group theoretical statements for
defining the kinematics of elementary spinning objects, i.e., what are the
necessary basic degrees of freedom for an elementary system and second,
to express the dynamics in terms of end point variables. We shall start
with analyzing the second goal.

2 . VARIATIONAL VERSUS NEWTONIAN
FORMALISM

In a broad sense we understand by Newtonian dynamics a formalism
for describing the evolution of classical systems that states a system of
differentia1 equations with boundary conditions at a single initial instant
of time. This uniquely determines the complete evolution of the system,
provided some mathematical regularities of the differential equations are
required. In this sense it is a deterministic theory. Just put the system
at an initial time t 1 in a certain configuration and the evolution follows
in a unique way. Roughly speaking it is a local formalism in the sense
that what the dynamical equations establish is a relationship between
different physical magnitudes and external fields at the same space-time
point, and this completely characterizes the evolution.
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On the other hand, a variational formalism is a global one. For ev-
ery plausible path to be followed by the system between two fixed end
points, although arbitrary, a magnitude is defined. This magnitude,
called the action, becomes a real function over the kind of paths joining
the end points and physicists call this path dependent function an ac-
tion functional. It is usually written as an integral along the plausible
paths of an auxiliary function L, called the Lagrangian, which is an ex-
plicit function of the different variables and their derivatives up to some
order. Dynamics is stated under the condition that the path followed
by the system is one for which the action functional is stationary. This
leads to a necessary condition to be fulfilled by the Lagrangian and its
derivatives, i.e., Euler-Lagrange dynamical equations.

Figure 1.1. Evolution in { t ,  r} space.

For instance, in Figure 1.1, we represent a possible path to be followed
by a point particle between the initial state expressed in terms of the
variables time and position, t1  and r 1  respectively and its final state at
point t2 , r 2 of the evolution space. The action functional is written in
terms of the Lagrangian L, which is an explicit function of t and r and
the first derivative dr /dt ≡ . Therefore the variational formalism states
that the path followed by the system, r (t), is the one that produces a
minimum value for the integral

(1.1)
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for the class of paths joining t1, r 1  with t
2

, r2 . The necessary condition
for the path r(t) is that it will be at least of class C ² i.e., of continuous
second order derivatives and that the system of ordinary differential
equations obtained from the Lagrangian

(1.2)

must be satisfied.
Thus the variational method might be interpreted as a mere interme-

diate trick to obtain in a peculiar way the differential equations of the
dynamics of the system from the knowledge of the Lagrangian, properly
chosen to achieve this goal. Once the dynamical equations are obtained
we can forget about the previous action functional and go onwards as
in Newtonian mechanics. But the particular solution we are looking for
in the preliminary variational statements is the one that goes through
the fixed end points. And the variational formalism, when expressed in
terms of end point conditions, is precisely the kind of classical dynamical
formalism closer to the quantum one we are searching for.

Nevertheless, mathematics says that the solution of the variational
problem in terms of two-point boundary conditions is perhaps neither
unique nor even with the existence guaranteed. Consider for instance
the free motion of a spherically symmetric spinning top. Let us fix
as initial state for the variational problem at time t1 , the position of
the center of mass and the orientation of a body frame parallel to the
laboratory axes and similarly the same values for the final state at time
t
2
. The dynamics of this system, compatible with the above conditions,

corresponds to a body rotating with a certain angular velocity around a
fixed center of mass. The variational solution implies a center of mass at
rest but an infinity of solutions for the rotational motion corresponding
to a finite, but arbitrary, number of complete turns of the body around
some arbitrary axis. The variational problem has solution with fixed end
points, but this solution is not unique. We have a classical indeterminacy
in the possible paths followed by the system, at least in the description
of the evolution of the orientation.

From the Newtonian viewpoint we need to fix at time t1 the center
of mass position and velocity and the initial orientation and angular
velocity of the body; the result is a unique trajectory. This contrasts
with the many possible trajectories of the variational approach. When
comparing both formalisms, this means that it is not possible to express
in a unique way our boundary conditions for the variational problem in
terms of the single time boundary conditions of Newtonian dynamics.
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For point particles this is not usually the case and basically both for-
malisms are equivalent. But when we have at hand more degrees of
freedom, as in the above example in which compact variables that de-
scribe orientation are involved, they are completely unlike. Our spinning
top is a spinning object and the description of spin is part of our goal; as
we shall see later, compact variables of the kind of orientation variables
are among the variables we shall need to describe the spin structure of
classical elementary particles. Quantization of these systems will lead
to the existence of differential operators acting on variables defined in a
compact domain. Theorems on representations of compact Lie groups
will play a dominant role in the determination of the quantum mechan-
ical spin structure of elementary particles.

Then we have at our disposal a classical dynamical formalism ex-
pressed in terms of end point conditions that in a broad sense agrees
with Newtonian dynamics for spinless particles, but when particles have
spin this produces classical solutions that no longer are equivalent to the
Newtonian ones and even suggests a possible classical indeterminacy
compatible with the variational statements. This classical indetermi-
nacy cannot be understood as the corresponding quantum uncertainty,
because it can be removed by the knowledge of additional information
like total energy or linear or angular momentum. It is an indeterminacy
related to the non-uniqueness of the solution of the boundary value prob-
lem of the variational formalism in general, and in this particular case
when acting on variables defined on compact manifolds.

For spinless particles, the matching of both formalisms requires the
Lagrangian to be chosen as a function of the first order derivatives of the
independent degrees of freedom, because Newton’s equations are second
order differential equations. But, what about systems involving spinning
particles? At this moment of the exposition, if it is not clear what kind
of variables are necessary to describe spin at the classical level, and even
the agreement of the variational approach with the Newtonian formalism
is doubtful because the basic objects they deal with are different, are we
able to restrict Lagrangians for spinning particles to dependence on only
first order derivatives? This mathematical constraint has to be justified
on physical grounds so that we shall not assume this statement any
longer.

Then our proposal is to analyze in detail a generalized Lagrangian
formalism, in particular under symmetry principles, enhancing the role
of the end point variables in order to establish a dynamical formalism
quite close to the quantum mechanical one. The variables we need to de-
scribe the initial and final data for classical elementary particles, i.e., the
classical equivalent to the free asymptotic states of the scattering theory,
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will be defined by pure kinematical arguments and they will be related
to what are called homogeneous spaces of the kinematical group. In this
way, they are intimately related to the kinematical group of symmetries,
and by assuming as a basic statement a special relativity principle, they
will be related to the corresponding space-time transformation group.

Then in the next sections we shall develop the basic features of a
generalized Lagrangian formalism and analyze some group theoretical
aspects of Lie groups of transformations, to finally express Noether’s
theorem in terms of the end point variables of the variational formalism.
These variables, which will be called kinematical variables, will play a
dominant role in the present formalism. They will define very accurately
the degrees of freedom of an elementary spinning particle, in the classical
and quantum mechanical formalisms.

3 . GENERALIZED LAGRANGIAN
FORMALISM

The Lagrangian formalism of generalized systems depending on higher
order derivatives was already worked out by Ostrogradsky.² We shall
outline it briefly here, mainly to analyze the generalized Lagrangians not
only in terms of the independent degrees of freedom but also as functions
of what we shall call kinematical variables of the system, i.e., of the end
point variables of the variational formulation.

Let us consider a mechanical system of n degrees of freedom, charac-
terized by a Lagrangian that depends on time t and on the n essential
coordinates q

i
(t), that represent the n independent degrees of freedom,

and their derivatives up to a finite order k. Because we can have time
derivatives of arbitrary order we use a superindex enclosed in brackets

to represent the corresponding k-th derivative, i.e., qi
(k ) (t) = d k q

i
(t) /dt k.

The action functional is defined by:

where i = 1,..., n. Using a more compact notation we define qi
( 0 ) ≡ qi ,

and therefore we shall write

for s = 0, . . . , k.
The trajectory followed by the mechanical system is that path which

passing through the fixed end-points qi
( s ) (t1 ) and q

i

( s )(t2), i = 1, . . . , n, s =
0, 1,..., k – 1, makes extremal the action functional (1.3). Note that we

(1.3)
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need to fix as boundary values of the variational principle some partic-
ular values of time t, the n degrees of freedom q i and their derivatives
up to order k – 1, i.e., one order less than the highest derivative of each
variable qi in the Lagrangian, at both end points of the problem. In
other words we can say that the Lagrangian of any arbitrary generalized
system is in general an explicit function of the variables we keep fixed
as end points of the variational formulation and also of their next order
derivative.

Once the action functional (1.3) is defined for some particular path
q i(t), to analyze its variation let us produce an infinitesimal modifica-
tion of the functions q i (t), q i(t) → q i( t ) + δ qi(t) while leaving fixed the
end-points of the variational problem, i.e., such that at t1 and t2 the
modification of the generalized coordinates and their derivatives up to
order k – 1 vanish, and thus δq i

(s)( t 1 ) = δq i
(s)( t 2) = 0, for i = 1, . . . , n

and s = 0, 1, . . . , k – 1. Then, the variation of the derivatives of the

q i (t) is given by q i
(s)

(t) → q i
(s) ( t) + δq i

(s)
(t) = q i

( s )
( t ) + d s δ q i ( t) / dt

s since
the modification of the s-th derivative function is just the s-th deriva-
tive of the modification of the corresponding function. This produces a
variation in the action functional δA = A [q + δ q] – A[q], given by:

(1.4)

after expanding to lowest order the first integral. The term

and by partial integration of this expression between t1 and t 2 , it gives:

because the variations of δqi in t1 and t 2 vanish. Similarly for the next
term:
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because δq i and δqi vanish at t 1 and  t 2 and finally for the last term
(l)

so that each term of (1.4) is written only in terms of the variations δq i.
Remark that to reach these final expressions, it has been necessary to
assume the vanishing of all δq for s = 0, . . . , k – 1, at times ti

( s )
l and t

2
.

By collecting all terms we get

If the action functional is extremal along the path  qi (t), its variation
must vanish, δA = 0. The variations δqi are arbitrary and therefore all
terms between squared brackets cancel out. We obtain a system of n
differential equations, the Euler-Lagrange equations

(1.5)

which can be written in condensed form as:

(1.6)

4. KINEMATICAL VARIABLES
In general, the system (1.6) is a system of n ordinary differential equa-

tions of order 2k, and thus existence and uniqueness theorems guarantee
only the existence of a solution of this system for the 2kn boundary con-
di t ions q i

( s ) ( t1 ), i = 1, . . . , n and s = 0, 1, . . . , 2 k– 1) at the initial instant
t 1. However the variational problem has been stated by the requirement
that the solution goes through the two fixed endpoints, a condition that
does not guarantee either the existence or the uniqueness of the solu-
tion. Nevertheless, let us assume that with the fixed endpoint condi-
tions of the variational problem, q i

( s ) (t ) and q1 i 
( s ) (t2), i = 1, . . . , n a n d

s = 0, 1, . . . , k – 1, at times t l and t 2, respectively, there exists a solution
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of (1.6) perhaps non-unique. This implies that the 2kn boundary con-
ditions at time t l required by the existence and uniqueness theorems,
can be expressed perhaps in a non-uniform way, as functions of the kn
conditions at each of the two endpoints. From now on, we shall consider
systems in which this condition is satisfied. It turns out that a particular
solution passing through these points will be expressed as a function of
time with some explicit dependence of the end point values

(1.7)

i, j, l = 1, . . . , n, r = 0, 1, . . . k – 1, in terms of these boundary end point
conditions.

Definition: The Action Function of the system along a classi-
cal path is the value of the action functional (1.3) when we intro-
duce in the integrand a particular solution (1.7) passing through
those endpoints:

(1.8)

Once the time integration is performed, we see that it will be an

explicit function of the kn + 1 variables at the initial instant, qj
(r) ( t l ),

r = 0 . . . , k – 1 including the time t l , and of the corresponding kn + 1
variables at final time t2 . We write it as

We thus arrive at the following

Definition: The kinematical variables of the system are the
time t and the n degrees of freedom q i and their time derivatives
up to order k – 1. The manifold X they span is the kinematical
space of the system.

The kinematical space for ordinary Lagrangians is just the configu-
ration space spanned by variables q i enlarged with the time variable t.
It is usually called the enlarged configuration space. But for gen-
eralized Lagrangians it also includes higher order derivatives up to one
order less than the highest derivative. Thus, the action function of a
system becomes a function of the values the kinematical variables take
at the end points of the trajectory, x 1 and x 2. From now on we shall
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consider systems for which the action function is defined and is a contin-
uous and differentiable function of the kinematical variables at the end
points of its possible evolution. This function clearly has the property
A (x, x) = 0.

The constancy of speed of light in special relativity brings space and
time variables on the same footing. So, the next step is to remove the
time observable as the evolution parameter of the variational formalism
and express the evolution as a function of some arbitrary parameter to be
chosen properly. Then, let us assume that the trajectory of the system
can be expressed in parametric form, in terms of some arbitrary evolution
parameter , {t( ), qi( )}. The functional (1.3) can be rewritten in terms
of the kinematical variables and their derivatives and becomes:

(1.9)

where the dot means derivative with respect to the evolution variable
that without loss of generality can be taken dimensionless. Therefore

has dimensions of action.
It seems that (1.9) represents the variational problem of a Lagrangian

system depending only on first order derivatives and of kn + 1 degrees
of freedom. However the kinematical variables, considered as general-
ized coordinates, are not all independent. There exist among them the
following (k – 1)n differential constraints

(1.10)

We can also see that the integrand is a homogeneous function of
first degree as a function of the derivatives of the kinematical variables.

In fact, each time derivative function qi
(s ) (t) has been replaced by the

quotient of two derivatives with respect to Even the

highest order k-th derivative function is expressed in
(k–1)terms of the derivatives of the kinematical variables q i and t. Thus

the function L is a homogeneous function of zero degree in the derivatives
of the kinematical variables. Finally, the last term , gives to the
character of homogeneous function of first degree. Then, Euler’s theorem
on homogeneous functions gives rise to the additional relation:

(1.11)
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With the above (k – 1)n differentiable constraints among the kinematical
variables (1.10) and condition (1.11), it reduces to n the number of
essential degrees of freedom of the system (1.9).

This possibility of expressing the Lagrangian as a homogeneous func-
tion of first degree of the derivatives was already considered in 1933 by
Dirac ³ on aesthetical grounds.

Function is not an explicit function of the evolution parameter
and thus we can see that the variational problem (1.9), is invariant with
respect to any arbitrary change of evolution parameter .4

In fact, if we change the evolution parameter then the derivative

such that the quo-
tients

where once again this last dot means derivation with respect to θ . It turns
out that (1.9) can be written as:

(1.12)

The formalism thus stated has the advantage that it is independent of
the evolution parameter, and if we want to come back to a time evolution
description, we just use the time as evolution parameter and make the
replacement = t, and therefore = 1. From now on we shall consider
those systems for which the evolution can be described in a parametric
form, and we shall delete the symbol over the Lagrangian, which is
understood as written in terms of the kinematical variables and their
first order derivatives.

If we know the action function of the system A( x1 , x 2), as a function
of the kinematical variables at the end points we can proceed conversely
and recover the Lagrangian L(x , )by the limiting process:

(1.13)

where the usual addition convention on repeated or dummy index j,
extended to the whole set of kinematical variables, has been assumed.

If in (1.9) we consider two very close points x1 ≡ x and x 2 ≡ x + dx, w e
have that the action function A( x, x + d x) = A ( x, x + d ) + L( x , ) d and
making a Taylor expansion of the function A with the condition A (x, x) = 0
we get (1.13).
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The function of the kinematical variables and their derivatives (1.13)
together with the homogeneity condition (1.11) and the (k – 1)n con-
straints among the kinematical variables (1.10) reduce the problem to
that of a system with n degrees of freedom but whose Lagrangian is a
function of the derivatives up to order k of the essential coordinates qi.

The formulation in terms of kinematical variables leads to the dynam-
ical equations (1.6) although the system looks like a system of a greater
number of variables. Let us first consider an example such that k = 1,
i.e., it is an ordinary first order Lagrangian. There are no constraints
among the kinematical variables, and thus a system of n degrees of free-
dom has exactly n + 1 kinematical variables, the time t ≡ x0 and the n
degrees of freedom qi ≡  xi. The Lagrangian (1.11) in terms of the kine-
matical variables produces a variational problem with n + 1 equations:

(1.14)

However, not all of equations (1.14) are independent, because if every
left-hand side of each equation (1.14) is multiplied by the corresponding

and added all together, we get:

(1.15)

Because of the homogeneity of it happens that the term:

(1.16)

and thus (1.15) vanishes identically. Now, if we assume for instance that
the time variable x0 is a monotonic function of parameter such that

, then we can express the term

(1.17)

and the dynamical equation of (1.14) corresponding to i = 0 is a function
of the others and therefore only n dynamical equations are functionally
independent.

If the Lagrangian depends on higher order derivatives there will be
constraints among the kinematical variables, and the variational prob-
lem must be solved with the method of Lagrange multipliers. Let us
consider for simplicity another example of only one degree of freedom
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q, but a Lagrangian that depends up to the second derivative of q, i.e.,
L(t ,q ,q (1) ,q (2) ). The only dynamical equation is:

(1.18)

Dynamical equations in the parametric description are now the three
equations:

The kinematical variables of the system are x0 =  t , x1 =  q ,x2 =
q(1) ≡ dq/dt, and thus . The Lagrangian in a
parametric description in terms of these variables is expressed as

It is a homogeneous function of first
degree in the variables , with the constraint or

, and we see that is independent of by construction.
The variational problem must be solved from the modified Lagrangian

, which is still a homogeneous function
of first degree in the derivatives of the kinematical variables and where
λ( ) is a function of to be determined, called a Lagrange multiplier.

(1.19)

and because of the homogeneity of G in terms of the the equation
for i = 0 can be expressed as a function of the other two, similar to the
previous example, but now we have the additional unknown λ ( ). The
two independent dynamical equations are:

(1.20)

(1.21)

but since by construction is not an explicit function of , then (1.20)
is reduced to the equation , and by replacing λ ( )
from (1.21) in (1.20), and recovering the generalized coordinate q and
its derivatives, we get(l.18).

In the general case we obtain kn + 1 dynamical equations, one for each
kinematical variable. However, one of these equations can be expressed
in terms of the others because of the homogeneity of the Lagrangian;
now we have in addition (k – 1)n new variables λ , the Lagrange multi-i

pliers that can be eliminated between the remaining equations. We thus
finally obtain the n independent equations that satisfy the n variables
qi  associated to the n degrees of freedom.
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The action function plays an important role since in a broad sense it
characterizes the dynamics in a global way. Its knowledge determines
through (1.13) the Lagrangian and by (1.6) the dynamical equations
satisfied by our system.

4.1 EXAMPLES
The action function of a nonrelativistic Galilei point particle of mass

m is given by:

(1.22)

and thus it gives rise to the Lagrangian:

but

Then , homogeneous of first degree in terms of the deriva-
tives of the kinematical variables, such that in a time evolution descrip-
tion = t and thus = 1; taking into account that there are no con-
straints among the kinematical variables we get:

(1.23)

The action function of a relativistic point particle of mass m is given
by:

(1.24)

and similarly

also homogeneous of first degree in the derivatives of the kinematical
variables and in a time evolution description we arrive at:

(1.25)
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Conversely, we can recover the action functions (1.22) and (1.24) after
integration of the corresponding Lagrangians (1.23) and (1.25), respec-
tively, along the classical free path joining the end points (t 1 , r1) and
(t 2 , r 2). This is the normal way we are used to. In general we shall
obtain prescriptions for guessing some plausible Lagrangians and after-
wards finding the corresponding action functions, but we have proceeded
in this example in the reverse way to enhance the role of the action func-
tion and the homogeneity in both cases of Lagrangian

These two Lagrangians for relativistic and nonrelativistic point parti-
cles will be obtained in the following chapters as a result of the applica-
tion of the formalism we propose to Lagrangian systems whose kinemat-
ical space is the four-dimensional manifold spanned by variables time t
and position r. The formalism determines them uniquely with no other
equivalence or possibility.

5. CANONICAL FORMALISM
In ordinary Lagrangian systems that depend only on first order deriva-

tives of the independent degrees of freedom, the canonical approach as-
sociates to every generalized coordinate qi a dynamical variable pi , called
its conjugate momentum that is defined by

As a generalization of this, in Lagrangian systems with higher order
derivatives, a generalized canonical formalism can be obtained by defin-
ing various canonical conjugate momenta (up to a total of k of them)
associated to each of the independent degrees of freedom q i : 5

(1.26)

and it is said that p i
(s) is the conjugate momentum of order s of the

variable qi . It can be checked from their definition that they satisfy the
property:

The generalized Hamiltonian is similarly defined as:

(1.27)

(1.28)

where addition on repeated indexes i = 1, …, n and s = 1, …, k is as-
sumed, and for this reason we have written the corresponding up and
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down indexes of the momenta in the opposite position from the corre-
sponding indexes of the variables qi

(s)

taking into account (1.27)
. We see that and

and doing the derivative with respect to the

variable qi
(s) , we get . Finally,

and it turns out that in the canonical formulation the generalized Hamil-
ton’s equations are:

(1.29)

(1.30)

(1.31)

where there are kn pairs of canonical conjugate variables,
for s = 0, . . . ,  k – 1, i = 1 , . . . , n, the generalized coordinates being now
the n degrees of freedom q and their derivatives up to order k – 1, i.e.,i

the kinematical variables with the time excluded.
The Poisson bracket of any two functions A(q,p) and B(q,p) is de-

fined as usual in terms of the corresponding pairs of canonical conjugate
variables:

(1.32)

that satisfies the antisymmetry {A, B} = –{B, A}, and the distributive
properties

{A,B + C} = {A,B} + {A,C}, {A, BC} = {A, B}C + B{A, C}

and for any three dynamical variables A, B and C, the Jacobi identities:

{A, {B,C}} + {B, {C,A}} + {C, {A,B}} =0

Then, Hamilton’s equations (1.29) and (1.30) can also be written as

and in general, for any time dependent dynamical variable A(q,p,t), its
time derivative, using (1.29,1.30), will be
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6. LIE GROUPS OF TRANSFORMATIONS
Let us introduce the notation and general features of the action of

Lie groups on continuous manifolds to analyze the transformation prop-
erties of the different magnitudes we can work with in either classical
or quantum mechanics. We shall use these features all throughout this
book.

Let us consider the transformation of an n-dimensional manifold X,
x ′ = gx given by n continuous and differentiable functions depending on
a set g ∈ G of r continuous parameters of the form

This transformation is said to be the action of a Lie group of transfor-
mations if it fulfils the two conditions:
(i) G is a Lie group, i.e., there exists a group composition law c =
φ(a, b) ∈ G, ∀ a, b ∈ G, in terms of r continuous and differentiable func-
tions φσ .
(ii) The transformation equations satisfy

change in the coordinates x i of a point x ∈ X is given by
Under the action of an infinitesimal element δg of the group G, the

The group parametrization can be chosen such that the coordinates
that characterize the neutral element e of the group are e ≡ (0,…,0),
so that an infinitesimal element of the group is the one with infinitesimal
coordinates

and therefore to first order in the group parameters,

after a Taylor expansion up to first order in the group parameters and
with x i = f i (x; 0). There are nr auxiliary functions of the group that
are defined as

(1.33)
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The group action on the manifold X can be extended to the action
on the set F (X) of continuous and differentiable functions defined on X
by means of:

(1.34)

If the group element is infinitesimal, then

after a Taylor expansion to first order in the infinitesimal group param-
eters. The infinitesimal transformation on F(X ) can be represented by
the action of a differential operator in the form

where is the identity operator and the linear differential operators

(1.35)

The operators X σ are called the generators of the infinitesimal trans-
formations. They are r linearly independent operators that span an r-
dimensional real vector space such that its commutator [Xσ , X λ ] also
belongs to the same vector space, i.e.,

In particular, when acting with the operator on
the coordinate x j we get

(1.36)

The coefficients are a set of real constant numbers, called the struc-
ture constants of the group, and the vector space spanned by the
generators is named the Lie algebra L (G), associated to the Lie group
G. The structure constants are antisymmetric in their lower indexes

and satisfy Jacobi’s indentitites:

If a finite group transformation of parameters gσ can be done in n
smaller steps of parameters gσ /n, with  n sufficiently large, then a finite 
transformation U (g)h(x) can be obtained as

Equations (1.36) are the commutation relations that characterize the
structure of the Lie algebra of the group.
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This defines the exponential mapping and in this case the group param-
eters gσ are called normal or canonical parameters. In the normal
parameterization the composition law of one-parameter subgroups re-
duces to the addition of the corresponding parameters of the involved
group elements.

Consider F(X) a Hilbert space of states of a quantum system; (1.34)
can be interpreted as the transformed wave function under the group
element g. Then if the operator U (g) is unitary it is usually written in
the explicit form

in terms of the imaginary unit i and Planck’s constant- , such that
in this case the new above are self-adjoint operators and therefore
represent certain observables of the system. The physical dimensions
of these observables depend on the dimensions of the group parameters
g σ, since the argument of the exponential function is dimensionless and
because of the introduction of Planck’s constant this implies that gσ

has dimensions of action. These observables, taking into account (1.35),
are represented in a unitary representation by the differential operators

(1.37)

However, (1.34) is not the most general form of transformation of the
wave function of a quantum system, as we shall see in Chapter 4, but
once we know the way it transforms we shall be able to obtain the
explicit expression of the group generators by a similar procedure as
the one developed so far. In general the wave function transforms under
continuous groups with what is called a projective unitary representation
of the group, which involves in general some additional phase factors.

Let us consider the following simple examples. The action of the transla-
tion group { +} acting on the real line is given by x ′ = f (x; g) ≡ x + a. T h e
neutral element is a = 0 and the composition law is the addition of parameters
a ″ = a' + a. Because we have only one variable and one group parameter we
obtain one auxiliary function and according to (1.33) it is

Therefore the group has a generator with general expression given by (1.35)
and is written as P = ∂ / ∂x. In a quantum mechanical description, when
acting on fuctions φ(x), according to (1.37) it becomes P = – i ∂ / ∂ x, with
dimensions of action divided by length, i.e., of linear momentum.

Another example is a rotation of the plane of angle α around the origin.
The transformation equations are
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It is the one-parameter group SO(2) acting on a two-dimensional manifold
. The neutral element corresponds to α = 0 and the group composition law

is again α″ = α ′ + α. The two auxiliary functions are

so that according to (1.37) the infinitesimal generator of the group is

(1.38)

Finally let us consider the action of the Euclidean group on two-dimen-
sional space. It consists of rotations and translations of the plane. It is a
three-parameter group and its action on a point of is given by

In the quantum case its representation is equation (1.38) multiplied by / i ,
and therefore J has dimensions of action or angular momentum.

An arbitrary group element is characterized by the three parameters g ≡
( α, a, b ). The neutral element is e ≡ (0, 0, 0). The composition of the group
g″ = g′ g is

which are analytic functions of the group parameters. The three linearly
independent infinitesimal generators associated to the three one-parameter
subgroups of parameters α, a and b are respectively

and the commutation relations that define its Lie algebra are

In all these examples the different subgroups are given in the canonical parame-
trization, so that the exponential mapping works. For instance, a rotation of
finite value α will be expressed as exp(α J) and its action on the x coordinate
will be:

and taking into account the expression (1.38) for J when acting on the x
coordinate we get

as it should be. We can similarly obtain its action on the y coordinate.
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6.1 CASIMIR OPERATORS
When we have a representation of a Lie group either by linear op-

erators or by matrices acting on a linear space, we can define there
what are called the Casimir operators. They are operators C that
can be expressed as functions of the generators Xσ of the Lie algebra
with the property that they commute with all of them, i.e., they sat-
isfy [C, Xσ ] = 0, ∀ σ = 1,…, r. In general they are not expressed as
real linear combinations of the Xσ and therefore they do not belong to
the Lie algebra of the group. They belong to what is called the group
algebra, i.e., the associative, but in general non-commutative algebra,
spanned by the real or complex linear combinations of products of the
Xσ , in the corresponding group representation.

In those representations where the Xσ are represented by self-adjoint
operators as in a quantum formalism, the Casimir operators may be also
self-adjoint and will represent those observables that remain invariant
under the group transformations. In particular, when we consider later
the kinematical groups that relate the space-time measurements between
inertial observers, the Casimir operators of these groups will represent
the intrinsic properties of the system. They are those properties of the
physical system whose measured values are independent of the inertial
observers.

For semisimple groups, i.e., for groups that do not have Abelian in-
variant subgroups like the rotation group SO(3), the unitary groups
S U (n ) and many others, it is shown that the Casimir operators are real
homogeneous polynomials of the generators Xσ , but this is no longer
the case for general Lie groups. Nevertheless, for most of the interesting
Lie groups in physics, like Galilei, Poincaré, De Sitter, S L (4, ), the
inhomogeneous ISL (4, ) and Conformal S U (2, 2) groups, the Casimir
operators can be taken as real polynomial functions of the generators.

In the examples shown in the previous section, the generators of { , +} and
SO(2), P and J respectively are Casimir operators of those groups because
they are one-parameter groups. For the Euclidean group in two dimensions,
it can be checked that the operator which is a polynomial function
of the generators, commutes with all of them and therefore it is a Casimir
operator for this group.

EXPONENTS OF A GROUP6.2

Wigner’s theorem about the symmetries of a physical system is well
known in Quantum Mechanics. 7

The concept of exponent of a continuous group G was developed by
Bargmann in his work on the projective unitary representations of con-
tinuous groups. 6
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It states that if H is a Hilbert space that characterizes the pure quan-
tum states of a system, and the system has a symmetry S, then there
exists a unitary or antiunitary operator U(S), defined up to a phase, that
implements that symmetry on H, i.e., if φ and ψ ∈ H are two possible
vector states of the system and | < φ |ψ > |2 is the transition probability
between them and U (S)φ and U (S)ψ represent the transformed states
under the operation S, then

If the system has a whole group of symmetry operations G, then
to each element g ∈ G there is associated an operator U (g) unitary
or antiunitary, but if G is a continuous group, in that case U (g) is
necessarily unitary. This can be seen by the fact that the product of two
antiunitary operators is a unitary one.

Because there is an ambiguity in the election of the phase of the
unitary operator U(g), it implies that in general
and therefore the transformation of the wave function is not given by
an expression of the form (1.34), but it also involves in general a phase
factor. However in the case of continuous groups we can properly choose
the corresponding phases of all elements in such a way that

(1.39)

where is a phase that is a continuous function
of its arguments. The real continuous function on G × G, ξ(g1 , g2 ) is
called an exponent of G. The operators U (g) do not reproduce the
composition law of the group G and (1.39) represents what Bargmann
calls a projective representation of the group.

If we use the associative property of the group law, we get

and also

Therefore
(1.40)

which in terms of the exponents becomes:

(1.41)
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Because of the continuity of the exponents,

(1.42)

Any continuous function on G, φ(g), with the condition φ(e) = 0, can
where e is the neutral element of the group .

generate a trivial exponent by

that satisfies (1.41) and (1.42). All trivial exponents are equivalent to
zero exponents, and in a unitary representation (1.39) can be compen-
sated into the phases of the factors, thus transforming the projective
representation (1.39) into a true unitary one.

nents is an intrinsic group property related to the existence or not of
central extensions of the group. 8

Given a continuous group, the existence or not of non-trivial expo-

6.3 HOMOGENEOUS SPACE OF A GROUP
A manifold X is called a homogeneous space of a group G, if ∀ x

1
, x

2
∈

X there exists at least one element g ∈  G  such that  x2 = gx1 . In
that case it is said that G acts on X in a transitive way. The term
homogeneous reminds us that the local properties of the manifold at
a point x are translated to any other point of the manifold by means
of the group action, and therefore all points of X share the same local
properties.

The orbit of a point x is the set of points of the form gx, ∀ g ∈ G,
such that if X is a homogeneous space of G, then the whole X is the
orbit of any of its points.

Given a point x0 ∈ X, the stabilizer group (little group) of x0 is
the subgroup H  x h ∈

0
of G, that leaves invariant the point x0 , i.e., ∀

If H is a subgroup of G, then every element g ∈ G can be written as
g = g'h, where h ∈ H, and g' is an element of G/H, the set of left cosets
generated by the subgroup H. If X is a homogeneous space of G, it can
be generated by the action of G on an arbitrary point  x ∈ X. T h en0

and thus the homogeneous space X is
isomorphic to the manifold G /H x0 .

The homogeneous spaces of a group can be constructed as quotient
manifolds of the group by all its possible continuous subgroups. Con-
versely, it can also be shown that if X a homogeneous space of a group
G, then there exists a subgroup H of G such that X is isomorphic to
G/H. Therefore, the largest homogeneous space of a group is the group
itself.
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In the previous example of the Euclidean group in two dimensions, ε2 , the
group manifold is spanned by the variables {(α, a, b)} with domains α ∈ [0 , 2π ],
a, b ∈  . Since the set of rotations {(α ,0,0), ∀ α ∈  [0,2π]}, forms a subgroup
SO(2) of ε2 , then the quotient manifold X ≡ ε  / S  (2) is the set of classes of
elements of the form {(β, x, y)} with β arbitrary and x and y fixed. Each class
can be characterized by the pair (x, y) ∈  

2 , and therefore the manifold X is
isomorphic to the Euclidean plane 2 . Given two arbitrary points in this plane
(x1 , y 1  ) and (x 2, y 2 ), they correspond respectively to the sets of group elements
(β, x y 1 ) and (β ' x 2, y 2 ) of ε2 , and therefore
leads to . Thus , there exists at least a group
element that links both points of the manifold 2 . It is in fact a homogeneous
space of ε 2

7. GENERALIZED NOETHER’S THEOREM
Noether’s analysis for generalized Lagrangian systems also states the

following

Theorem: To every one-parameter group of continuous trans-
formations that transform the action function of the system in
the form leaving
dynamical equations invariant, there is associated a classical ob-
servable N, which is a constant of the motion.

Let us assume the existence of an r -parameter continuous group of
transformations G, of the enlarged configuration space (t ,qi ), that can
be extended as a transformation group to the whole kinematical space
X .  Le t  δg be an infinitesimal element of G with coordinates δgα , α =
1, . . . , r and its action on these variables be given by:

(1.43)

(1.44)

and its extension on the remaining kinematical variables by

(1.45)

and in general

(1.46)

for s = 0, 1, . . . , k – 1 and where Mα and are functions only of

q with s ≥ 1, obtained in terms of thei and t while the functions
derivatives of the previous ones, will be functions of the time t and of
the variables qi and their time derivatives up to order s.

O

1 , , 

2

.
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For instance,

but up to first order in δ g

and thus

and comparing with (1.45) we get

where the total time derivative

The remaining for s > 1, are obtained in the same way from the previous

Under δg the change of the action functional of the system is:

By replacing in the first integral the integration range (t '1 , t'2 ) by ( t1 , t 2 )
having in mind the Jacobian of t' in terms of t, this implies that the
differential dt' = (1 + d (δt)/dt)dt, and thus:

keeping only first order terms in the Taylor expansion of the first La-
grangian L(t + δt, q (s) + δ q ( s ) ).

.
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Now, in the total variation of is contained

a variation in the form of the function and a variation in its
argument t, that is also affected by the transformation of the group, i.e.,

where is the variation in form of the function at the instant
of time t. Taking into account that for the variation in form

it follows that

(1.47)

Making the replacements

and collecting terms we get
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The terms between squared brackets are precisely the conjugate mo-
menta of order s, pi

( s) , except the fist one, which is the left-hand side

of (1.5) and vanishes identically if the functions q i
satisfy the dynamical

equations. Now if we introduce in the integrand the variables q
i

t h a t
satisfy Euler-Lagrange equations, the variation of the action functional
(1.47) is transformed into the variation of the action function along the
classical trajectory, and therefore, the variation of the action function
can be written as,

(1.48)
with  pi

given in (1.26). If we replace in (1.48) the form variation(s)

then

(1.49)

with the usual addition convention. By substitution of the variations δt

and δq in terms of the infinitesimal element of the group δi g , (1.44-α( s )

1.46), we get:

(1.50)

with the following range for repeated indexes for the addition convention,
i =1,...,n , s =1 , . . . ,k, u = 0 , 1 , . . . , k– 1  a n d  α =  1 , . . . ,r.

In the above integral we are using the solution of dynamical equations,
and therefore the variation of the action function is
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If it happens to be of first order in the group parameters in the form

(1.51)

then equating to (1.50) we can perform the trivial time integral. By con-
sidering that parameters δgα   are arbitrary, rearranging terms depending
on t 1 and t 2

on the left-  and right-hand side, respectively, we get sev-
eral observables that take the same values at the two arbitrary times t 1

and t
2

. They are thus constants of the motion and represent the time
conserved physical quantities,

(1.52)

These are the r Noether constants of the motion related to the in-
finitesimal transformations (1.51) of the action function under the cor-
responding r-parameter group.

To express the different magnitudes in terms of the kinematical vari-
ables, let us define the variables x j according to the rule: x  = t ,0

Since a n d

the derivatives in the definition of the canonical mo-
menta can be written as:

(1.53)

in terms of the functions Fi  of the expansion (1.11) of the Lagrangian.
The different conjugate momenta appear in the form:

in terms of the functions Fi  and their time derivatives. Therefore the
Noether constants of the motion are written as

(1.54)

(1.55)

We see that the Noether constants of the motion Nα  are finally ex-
pressed in terms of the functions Fi  and their time derivatives, of the
functions M( s )

i α  that represent the way the different kinematical variables
transform under infinitesimal transformations, and of the functions B α

which, as we shall see below, are related to the exponents of the group
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G. Functions Fi  and their time derivatives are homogeneous functions
of zero degree in terms of the derivatives of the kinematical variables i.

Functions Bα (x) and M
(s )

i α (x) depend only on the kinematical variables.
Consequently, Noether constants of the motion are also homogeneous
functions of zero degree in terms of the derivatives of kinematical vari-
ables and thus invariant under arbitrary changes of evolution parameter.

In the previous exposition we have assumed for simplicity that the
dependence of the Lagrangian on the derivatives of the coordinates qi is
up to the same order k for each variable qi . However, if this dependence
is of a different order k i for every variable q i , we have just to replace in
the dynamical equations (1.6) the variable k by the corresponding ki ,
i.e.,

and the definition of the conjugate momenta (1.54) by

without any further change, and the kinematical space is not of dimen-
sion kn + 1, but rather of dimension k1 + k 2 + ... + k n + 1.

(1.56)

(1.57)

8 . LAGRANGIAN GAUGE FUNCTIONS
In the variational formulation of classical mechanics

(1.58)

A [q] is a path functional, i.e., it takes in general different values for
the different paths joining the fixed end points x and  x . Then it is1 2
necessary that L d be a non-exact differential. Otherwise, if Ldt = dλ,
t h e n  A [ q ] = λ 2 – λ 1 and the functional does not distinguish between
the different paths and the action function of the system from x1 to x ,
A(x (

2

1 , x ) is expressed in terms of the potential function2) = λ (x2 ) – λ x1

λ (x), and is thus, path independent.
I f  λ (x) is a real function defined on the kinematical space X of a

Lagrangian system with action function A ( x1 , x 2 ), then the function
A' ( x 1 , x2 ) =  A ( x1 , x2 ) + λ ( x2 ) –  λ ( x1 ) is another action function equiv-
alent to A (x ). In fact it gives rise by (1.13) to the Lagrangian L'1 , x 2

that differs from L in a total -derivative. 9

Using (1.13), we have

(1.59)
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and therefore L and L' produce the same dynamical equations and
A (x1 , x 2 ) and A'(x1 , x 2 ) are termed as equivalent action functions.

Let G be a transformation group of the enlarged configuration space
(t, q i ), that can be extended to a transformation group of the kinemati-
cal space X. Let g ∈ G be an arbitrary element of G and x' = gx, the
transform of x. Consider a mechanical system characterized by the ac-
tion function A(x1 , x 2 ) that under the transformation g is changed into
A (x' , x '  ). If G is a symmetry group of the system, i.e., the dynamical1 2

equations in terms of the variables x' are the same as those in terms of
the variables x, this implies that A (x '  , x ' ) and A(x , x ) are necessarily2l21

equivalent action functions, and thus they will be related by:

(1.60)

The function α will be in general a continuous function of g and x. This
real function α  (g; x) defined on G × X is called a gauge function of the
group G for the kinematical space X. Because of the continuity of the
group it satisfies α  (e; x ) = 0, e being the neutral element of G. If the
transformation g is infinitesimal, let us represent it by the coordinates
δ   , then α ( δg; x) = σg δ  Bg σ

σ (x) to first order in the group parameters.
The transformation of the action function takes the form

i.e., in the form required by Noether’s theorem to obtain the correspond-
ing conserved quantities. In general, Bσ functions for gauge-variant La-
grangians are obtained by

(1.61)

Because of the associative property of the group law, any gauge func-
tion satisfies the identity

(1.62)

where the function ξ , defined on G × G, is independent of x and is an
exponent of the group G.

This can be seen by the mentioned associative property of the group law.
From (1.60) we get:

(1.63)

and also
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and therefore by identification of this with the above (l.63), when collecting
terms with the same x argument we get

and since x1 and x 2 are two arbitrary points of X, this expression is (1.62)
and defines a function ξ(g', g), independent of x.

If we substitute this function ξ(g', g) into (1.41) we see that it is
satisfied identically. For g' = g = e, it reduces to ξ (e, e) = α (e; x ) = 0,
and thus ξ is an exponent of G.

It is shown by Levy-Leblond, that if X is a homogeneous space ofl0

G, i.e., if there exists a subgroup H of G such that X = G/H, then, the
exponent ξ is equivalent to zero on the subgroup H, and gauge functions
for homogeneous spaces become:

(1.64)

where h is any group element of the coset space represented by x ∈x

G / H .
For the Poincaré group P all its exponents are equivalent to zero

and thus the gauge functions when X is a homogeneous space of P are
identically zero. Lagrangians of relativistic systems whose kinematical
spaces are homogeneous spaces of P can be taken strictly invariant.

However, the Galilei group G has nontrivial exponents, that are char-
acterized by a parameter m that is interpreted as the total mass of the
system, and thus Galilei Lagrangians for massive systems are not in gen-
eral invariant under G. In the quantum formalism, the Hilbert space of
states of a massive nonrelativistic system carries a projective unitary
representation of the Galilei group instead of a true unitary representa-
tion. 11

9. RELATIVITY PRINCIPLE. KINEMATICAL
G R O U P S

A Special Relativity Principle postulates the existence of a class
of equivalent observers, called inertial observers, for which the laws that
govern the different mechanical processes must have the same form. This
idea stated first for mechanical systems is usually extended to the anal-
ysis of all physical phenomena, thus giving rise to a kind of universality
of the physical laws when considered their invariance for a wide class of
observers, as large as possible.

Therefore any theoretical frame, devised to study some physical sys-
tem, must contain the different interpretations provided by the different
inertial observers. Then, when measuring some particular observable
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A by observers O and O', the formalism has to describe on theoretical
grounds not only the values of their respective measurements but also
the way both observers relate them, in terms of their relative situation
or motion.

In this way a relativity principle states that there are no privileged
observers for analyzing general physical phenomena, but rather that
once a single particular observer is given, there exists a complete class
of them and therefore the theoretical problem is translated to properly
define this class, i.e., how many they are and how they are related.

A second part of the relativity principle is that the way two inertial
observers relate their respective measurements of any physical magni-
tude depends only on how they relate their measurements of arbitrary
space-time events. It turns out that a sample of measurements of the
instant and the three spatial coordinates of different space-time events
are enough to establish the relationship between measurements of any
other observable.

The composition of different space-time transformations produces new
space-time transformations. Because the composition of applications is
associative and given a transformation there always exists its inverse, we
have a complete group of space-time transformations associated to any
relativity principle.

This set of space-time transformations that defines the class of inertial
observers related to some specific special relativity principle is called a
kinematical group.

We know that the Poincaré P and Galilei G groups are two possible
space-time transformation groups that define respectively the relativity
principle for relativistic and nonrelativistic mechanical processes. These
groups have only two independent Casimir invariants and therefore the
intrinsic features of elementary particles these groups allow description
are only mass and spin. To describe more and more intrinsic attributes
the basic kinematical group has to be enlarged.

One of the goals of theoretical physics is to search for the appropriate
kinematical group, an endeavour that is still open. Nevertheless, since
the scope of this book is at least to achieve a description of spin, either
relativistic or nonrelativistic, we shall deal with these two groups in the
next chapters.

10. ELEMENTARY SYSTEMS
In Newtonian mechanics the simplest geometrical object is a point of

mass m. Starting with massive points we can construct arbitrary sys-
tems of any mass and shape, and thus any distribution of matter. The
massive point can be considered as the elementary particle of Newtonian
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mechanics. In the modern view of particle physics it corresponds to a
spinless particle. We know that there exist spinning objects like elec-
trons, muons, photons, neutrinos, quarks and perhaps many others, that
can be considered as elementary particles in the sense that they cannot
be considered as compound systems of other objects. Even more, we do
not find in Nature any spinless elementary particles. It is clear that the
Newtonian point does not give account of the spin structure of particles
and the existence of spin is a fundamental intrinsic attribute of an ele-
mentary particle, which is lacking in Newtonian mechanics, but it has
to be accounted for.

In quantum mechanics, Wigner’s work on the representations of the12

inhomogeneous Lorentz group provides a very precise mathematical def-
inition of the concept of elementary particle. An elementary particle
is a quantum mechanical system whose Hilbert space of pure states is the
representation space of a projective unitary irreducible representation of
the Poincaré group. Irreducible representations of the Poincaré group
are characterized by two invariant parameters m and S, the mass and
the spin of the system, respectively. By finding the different irreducible
representations, we can obtain the quantum description of massless and
massive particles of any spin.

The very important expression of the above mathematical definition,
with physical consequences, lies in the term irreducible. Mathemati-
cally it means that the Hilbert space is an invariant vector space under
the group action and that it has no other invariant subspaces. But it
also means that there are no other states for a single particle than those
that can be obtained by just taking any arbitrary vector state, form all
its possible images in the different inertial frames and finally produce
the closure of all finite linear combinations of these vectors.

We see that starting from a single state and by a simple change of
inertial observer, we obtain the state of the particle described in this
new frame. Take the orthogonal part of this vector to the previous one
and normalize it. Repeat this operation with another kinematical trans-
formation acting on the same first state, followed by the corresponding
orthonormalization procedure, as many times as necessary to finally ob-
tain a complete orthonormal basis of the whole Hilbert space of states.
All states in this basis are characterized by the physical parameters that
define the first state and a countable collection of group transformations
of the kinematical group G. And this can be done starting from any
arbitrary state.

This idea allows us to define a concept of physical equivalence among
states of any arbitrary quantum mechanical system in the following way:
Two states are said to be physically equivalent if they can produce by
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the above method an orthonormal basis of the same Hilbert subspace, or
in an equivalent way, if they belong to the same invariant subspace under
the group action. It is easy to see that this is an equivalence relation. But
if the representation is irreducible, all states are equivalent as basic pieces
of physical information for describing the elementary system. There is
one and only one single piece of basic physical information to describe
an elementary object. That is what the term elementary might mean.

But this definition of elementary particle is a pure group theoretical
one. The only quantum mechanical ingredient is that the group operates
on a Hilbert space. Then one question arises. Can we translate this
quantum mechanical definition into the classical domain and obtain an
equivalent group theoretical definition for a classical elementary particle?

Following with the above idea, in classical mechanics we have no vec-

kinematical  space.

tor space structure to describe the states of a system. What we have are
manifolds of points where each point represents either the configuration
state, the kinematical state or the phase state of the system depending
on which manifold we work. But the idea that any point that repre-
sents the state of an elementary particle is physically equivalent to any
other, is in fact the very mathematical concept of homogeneity of the
manifold under the corresponding group action. In this way, the irre-
ducibility assumption of the quantum mechanical definition is translated
into the realm of classical mechanics in the concept of homogeneity of
the corresponding manifold under the Poincaré group or any other kine-
matical group we consider as the symmetry group of the theory. But,
what manifold? Configuration space? Phase space? The answer as has
been shown in previous works, is that the appropriate manifold is the13

In the Lagrangian approach of classical mechanics, the kinematical
space X is the manifold where the dynamics is developed as an input-
output formalism. When quantizing the system we will obtain the nat-
ural link between the classical and quantum formalisms through Feyn-
man’s path integral approach, as will be shown later. This manifold is
the natural space on which to define the Hilbert space structure of the
quantized system. In a formal way we can say that each point x ∈ X that
represents the kinematical state of a system is spread out and is trans-
formed through Feynman’s quantization into the particle wave function

(x) defined around x. This wave function is in general a squared in-
tegrable complex function defined on X. This will be done in Chapter
4 .

We can also analyze the elementarity condition from a different point
of view. Let us consider an inertial observer O that is measuring a
certain observable A ( ) of an arbitrary system at an instant . T h i s
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observable takes the value A'( )  for a different inertial observer O'. It
can be expressed in terms of A    in the form A'  = f(A ,g), where
g is the kinematical transformation between both observers. At instant

+ d , the corresponding measured values of that observable will have 
changed but A' = f (A ),g) with the same g as before,
and assuming that the evolution parameter  is group invariant.

But if the system is elementary, we take as an assumption that the
modifications of the observables produced by the dynamics can be com-
pensated by a change of inertial reference frame. Then, given an observer
O, it is always possible to find at instant  another inertial observer
O’ that measures the value of an essential observable A' w i t h
the same value as O does at instant i.e., A'  ≡ A . If the
system is not elementary, this will not be possible in general because
the external interaction might change its internal structure, and thus it
will not be possible to compensate the modification of the observable
by a simple change of inertial observer. Think about a non-relativistic
description of an atom that goes into some excited state. The new in-
ternal energy, which is Galilei invariant, cannot be transformed into the
old one by a simple change of reference frame.

But the essential observables are the kinematical variables. From the
dynamical point of view we can take as initial and final points any x   and1

x ∈ X, compatible with the causality requirements. This means that
any x can be considered as the initial point of the variational formalism.

2

In this way, at any instant if the system is elementary, we can find an
infinitesimal kinematical transformation δg  such that

or by taking the inverse of this transformation,

This equation represents the dynamical evolution equation in X space.
Knowledge of the initial state x and the function δ1 g completely de-
termines the evolution of the system. In general, δg will depend on
the instant  because the change of the observables depends on the
external interaction. But if the system is elementary and the motion
is free, all δg  have necessarily to be the same, and thus indepen-
dent. We cannot distinguish in a free motion one instant from any other.
Then, starting from x we shall arrive at x   by the continuous action21

of the same infinitesimal group element δ g, and the free particle motion
is the action of the one-parameter group generated by δ g on the initial
state. Therefore, there should exist a finite group element g ∈ G such
that x   = g x  . We thus arrive at the:12
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Definition: A classical elementary particle is a Lagrangian
system whose kinematical space X is a homogeneous space of
the kinematical group G.

Usually the Lagrangian of any classical Newtonian system is restricted
to depend only on the first order derivative of each of the coordinates
qi  that represent the independent degrees of freedom, or equivalently,
that the qi satisfy second order differential equations. But at this stage,
if we do not know what are the basic variables we need to describe our
elementary system, how can we state that they necessarily satisfy second
order differential equations? If some of the degrees of freedom, say q ,1

q  and q  , represent the center of mass position of the system, Newto-32
nian mechanics implies that in this particular case L will depend on the
first order derivatives of these three variables. But what about other
degrees of freedom? It is this condition on the kinematical space to be
considered as a homogeneous space of G, as the mathematical statement
of elementarity, that will restrict the dependence of the Lagrangian on
these higher order derivatives. It is this definition of elementary parti-
cle with the proper election of the kinematical group, which will supply
information about the structure of the Lagrangian.

The Galilei and Poincaré groups are ten-parameter Lie groups and
therefore the largest homogeneous space we can find for these groups
is a ten-dimensional manifold. The variables that define the different
homogeneous spaces will share the same domains and dimensions as the
corresponding variables we use to parameterize the group. Both groups,
as we shall see later, are parameterized in terms of the following variables
(b, a, v, α ) with domains and dimensions respectively like b ∈ t h a t
represents the time parameter of the time translation and a ∈  the
three spatial coordinates for the space translation. Parameter v ∈
are the three components of the relative velocity between the inertial
observers, restricted to v < c in the Poincaré case. Finally α ∈ SO (3) are
three dimensionless variables which characterize the relative orientation
of the corresponding Cartesian frames and whose compact domain is
expressed in terms of a suitable parametrization of the rotation group.

In this way the maximum number of kinematical variables, for a classi-
cal elementary particle, is also ten. We represent them by x ≡ ( t, r, u, α )
with the same domains and dimensions as above and interpret them re-
spectively as the time, position, velocity and orientation of the particle.

Because the Lagrangian must also depend on the next order deriva-
tives of the kinematical variables, we arrive at the conclusion that L
must also depend on the acceleration and angular velocity of the parti-
cle. The particle is a system of six degrees of freedom, three r, represent
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the position of a point and other three α , its orientation in space. We
can visualize this by assuming a system of three orthogonal unit vectors
linked to point r as a body frame. But the Lagrangian will depend up
to the second time derivative of r, or acceleration of that point, and on
the fist derivative of α , i.e., on the angular velocity. The Galilei and
Poincaré groups lead to generalized Lagrangians depending up to second
order derivatives of the position.

By this definition it is the kinematical group G that implements the
special Relativity Principle that completely determines the structure of
the kinematical space where the Lagrangians that represent classical el-
ementary particles have to be defined. 14 Point particles are particular
cases of the above definition and their kinematical spaces are just the
quotient structures between the group G and subgroup of rotations and
boosts, and thus their kinematical variables reduce only to time and po-
sition ( t, r). Therefore, the larger the kinematical group of space-time
transformations, the greater the number of allowed classical variables
to describe elementary objects with a more detailed and complex struc-
ture. In this way, the proposed formalism can be accommodated to any
symmetry group.

10.1 ELEMENTARY LAGRANGIAN
SYSTEMS

An elementary Lagrangian system will be characterized by the La-
grangian function L(x, ) where the variables x  ∈ X lie in a homoge-
neous space X of G. L is a homogeneous function of first degree of the
derivatives of the kinematical variables, and this allows us to write

(1.65)

Functions Fi (x , ) are therefore homogeneous functions of zero degree in
the variables  and summation convention on repeated indexes as usual
is assumed.

Under G, x transforms as x' = gx  or more explicitly its coordinates
by x' i = ƒ i ( g, x), and their derivative variables

transform like the components of a contravariant vector.
The Lagrangian transforms under G,

(1.66)

(1.67)
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i.e.,

(1.68)

Taking into account the way the different variables transform, we thus
arrive at:

(1.69)

In the case when α (g ; x)  = 0, they transform like the components of a
covariant vector over the kinematical space X. But in general this will
not be the case and α ( g ; x) contains basic physical information about
the system.

We thus find that for a fixed kinematical space X, the knowledge of
the group action of G on X, and the gauge function α (g; x ), will give us
information about the possible structure of the functions Fi (x, ), and
therefore about the structure of the Lagrangian.

In practice, if we restrict ourselves to the Galilei G and Poincaré P
groups, we see that P has gauge functions equivalent to zero and thus
Poincaré Lagrangians that describe elementary particles can be taken
strictly invariant. In the case of the Galilei group, it has only one class
of gauge functions that define the mass of the system, and thus nonrel-
ativistic Lagrangians will be in general not invariant. In the particular
case of Galilei invariant Lagrangians, they will describe massless sys-
tems, as we shall see in the next chapters.

11. THE FORMALISM WITH THE
SIMPLEST KINEMATICAL GROUPS

Let us start first with the Newtonian point particle. By definition its
kinematical variables for its Lagrangian formalism are time t and posi-
tion r. To establish a relativity principle we have to fix the kinematical
group of space-time transformations that defines the class of equivalent
or inertial observers. Let us assume that the set of inertial observers
are all at rest with their Cartesian frames parallel with respect to each
other. Then the kinematical relation between observers is given by the
group action

(1.70)

at any instant of the evolution parameter , so that the kinematical
group is the space-time translation group { , +}. It is a four-parameter
group with four generators H and P, where as usual we represent three-
vector magnitudes by bold face characters. In the action (1.70) and
according to the general representation (1.35) the generators are given
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by the differential operators

(1.71)

(1.72)

and satisfy the commutation relations

This group has four functionally invariant Casimir operators, which are
precisely these four generators. The group law g" = g' g, is

(1.73)b" = b' + b,  a" = a' + a .

We see that the kinematical space of our point particle is in fact
isomorphic to the whole kinematical group { , +}, where we consider
the group action from the left, so that our kinematical variables x ≡  ( t, r )
have the same domains and dimensions as the group parameters (b, a ),
respectively. The kinematical space X is clearly the largest homogeneous
space of the kinematical group.

The Lagrangian for a point particle will be a function of (t, r , ),
and according to (1.11), a homogeneous function of first degree in terms
of Then it can be written as

(1.74)

with T = ∂L / ∂  and  R = ∂L / ∂ , where the vector function R is a
shorthand notation for Ri  = ∂L / ∂ . Since this Abelian group has no
nontrivial exponents, the Lagrangian will be invariant under this group,
and thus independent of (t, r). By assuming a group invariant evolution
parameter , the derivatives of the kinematical variables transform as

(1.75)

by simply taking the -derivative in (1.70). Then the functions T and
R transform as T' = T and R' = R. Dynamical equations can be any
autonomous second order differential equation of the functions r(t), not
depending explicitly on the variables r and t.

When applying Noether’s theorem for this kinematical group we ob-
tain as constants of the motion, the energy H = –T and the linear
momentum P = R. Possible Lagrangians for this kind of systems are
very general and might be any arbitrary function of the components of
the velocity dri /dt. The homogeneity condition in terms of kinematical
variables implies that, for instance, expressions of the form
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with arbitrary constants aij, bi jk , etc., or expressions like

that are homogeneous of first degree in the derivatives, can be taken as
possible Lagrangians. Linear terms of the form
are also homogeneous functions of first degree in the derivatives, but are
not considered because they can be written as a total -derivative, and
can be withdrawn.

Let us go further and extend the class of inertial observers in such a
way as to allow them to set up their Cartesian frames in arbitrary orien-
tations. This amounts physically to assuming that the three-dimensional
space is isotropic. All directions in three-space, are equivalent. Then,
our kinematical transformations are

(1.76)

where R (β) represents a rotation matrix written in terms of three pa-
rameters βi of a suitable parametrization of the rotation group. This
new kinematical group is the Euclidean group in three dimensions in-
cluding time translations. It is usually called the Aristotle group GA . It
has in addition to H and P, three new generators J, that in the above
action (1.76) are given by the operators J = r × ∇ , and the commutation
relations of the Lie algebra of this group are

(1.77)
It has three functionally independent Casimir operators, H, P2 and
P · J, but it does not have central extensions, and thus no nontrivial
exponents. Lagrangians in this case will be also invariant. This addi-
tional rotation invariance leads to the conclusion that L, which still has
the general form (1.74), will be an arbitrary function of

When applying Noether’s theorem, we have in addition to the en-
ergy H = – ∂ L / ∂ =  –T and linear momentum P = ∂ L / ∂  = R ,  a
new observable, related to the invariance under rotations, the angular
momentum J = r × P.

The group elements are parameterized in terms of the seven param-
eters g ≡ (b, a, β ) and the group GA has the composition law g" = g'g
given by:

(1.78)

We clearly see, by comparing (1.78) with (1.76), that the kinematical
space X of our point particle is isomorphic to the homogeneous space
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of the group, X GA /SO(3). It corresponds to the coset space of
elements of the form (t, r, 0 ) when acting on the subgroup SO(3) of ele-
ments (0, 0, β). The kinematical variables (t, r ) span the same manifold
and have the same dimensions as the set of group elements of the form
(b, a, 0).

But once we have a larger symmetry group, we can extend our defini-
tion of elementary particle to the whole group GA . The physical system
might have three new kinematical variables αα , the angular variables.
In a -evolution description of the dynamics, with the identification in
g" = g'g of g" ≡ x ' ( ), g ≡  x( ) and g' playing the role of the group
element g acting on the left, we get x' = gx. Taking into account (1.78),
they explicitly transform as:

as in (1.76) and also for the new degrees of freedom

(1.79)

Figure 1.2. Evolution in kinematical {t, r, αα } space.

The seven kinematical variables of our elementary particle are now
time, position and orientation. Our system can be interpreted as a
point with three unit vectors ei attached to it. This local frame can
rotate, and rotation of this frame is described by the evolution of the
new variables αα . We schematically represent them as in Figure 1.2. The
components of unit vectors e i are the matrix elements of the orthogonal
rotation matrix when considered by columns. These
nine components or matrix elements are expressed in this way in terms
of the three essential parameters αα , the three new degrees of freedom.
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Then the Lagrangian for this system will be also a function of α α and
or equivalently of the angular velocity w of the moving frame. The

homogeneity condition allows us to write L as

(1.80)

where T and R, are defined as before (1.74), and These
functions transform under the group GA  as:

As a remark all functions T, R and W are translation invariant. Now,
total energy is H = –T, l inear momentum P = R, but the angular
momentum takes the form

The particle, in addition to the angular momentum r × P, has now a
translation invariant angular momentum. The particle, a point and a
rotating frame like the usual description of a rigid body, has spin W .
Nevertheless we have seen that while restricting ourselves to the Aristotle
kinematical group we do not obtain generalized Lagrangians. All above
Lagrangians depend only on the first order derivative of variables r and
α .α .

It is the statement by Galileo of the Principle of Inertia that enlarges
the Aristotle kinematical group GA  to the whole Galilei group G. The
physical requirement that the laws of dynamics must be independent
of the uniform relative motion between inertial observers sets up a new
kinematical group with a more complex structure.

We see that once we have a larger group we can also enlarge, in an
appropriate way, the kinematical variables of our point particle. We can
obtain larger homogeneous spaces of the Galilei group or of any other
kinematical group we consider, as the space-time transformation group
that implements the relativity principle. But this will be guided by phys-
ical conditions. If we want to describe electromagnetic interactions, the
relativity principle is extended to include invariance of Maxwell’s equa-
tions. Then this principle requires that the kinematical group must be,
at least, the Poincaré group. But the formalism can be further extended
to the conformal group or by considering hyperbolic rotations in space,
changes of scale in space and time or more general transformations to
more and more general groups.

Therefore the variables we need to describe the structure of elemen-
tary particles are directly connected with the structure of the kinematical
group. This is one of the reasons why we call to the different homo-
geneous spaces of the corresponding kinematical group the kinematical
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space of the system, and to the above formalism the Kinematical Theory
of Elementary Particles.

When restricted to ten-parameter groups, Bacry and Levy-Leblond 15

found by very general hypothesis different possible kinematical groups.
Among them there are the Galilei G and Poincaré P groups, but also
the De Sitter groups SO (3,2) and SO (4,1), which can be considered
to describe the relativity principle in a cosmological background in a
static curved space-time universe of constant curvature. They depend
on two universal constants R, the scale factor of the universe that defines
its constant curvature, and c the speed of light that defines the upper
bound of the velocity of signals, and also of a signature k = ±1 that
selects either positive or negative curvature. With these two universal
scalars, all ten group parameters are dimensionless. When the curvature
vanishes, i.e., R → ∞, both De Sitter groups have as a limit the Poincaré
group. De Sitter space-time, either of positive or negative curvature,
derives into flat Minkowski space-time. When c → ∞,  then P → G.
Each time a universal constant disapears by a limiting process, a group
parameter obtains a physical dimension, thus producing what has been
called a dimensional splitting. 16

In the next two chapters we shall deal with the Galilei and Poincaré
groups respectively. We will analyze different kinds of nonrelativistic
and relativistic spinning particles these groups allow us to define, when
considered as the kinematical groups of the theory and according to the
formalism proposed so far. Extension of the approach to the conformal
group is delayed till Chapter 6.
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Chapter 2

NONRELATIVISTIC
ELEMENTARY PARTICLES

In this chapter different kinds of nonrelativistic particles are analyzed,
by considering the Galilei group G as the kinematical group of space-time
transformations that implements the relativity principle. To begin with,
we shall consider first a detailed analysis of the Galilei group and its
Lie algebra in terms of some particular parametrization of the rotation
group, to properly describe the orientation variables when considered as
kinematical variables of an elementary particle. In this way we shall be
able to obtain a mathematical and physical description of the variables
of the different homogeneous spaces of G.

One important feature of the spinning particles, either relativistic or
nonrelativistic, is the separation between the center of mass and center
of charge. Thus when talking about the position of the particle we
have to distinguish between the position of the center of charge and the
position of the center of mass. This comes about from the analysis of the
conserved kinematical momentum K and linear momentum P, which is
not lying along the velocity of the charge. Linear momentum is related
as usual with the velocity of the center of mass. The free particle can
be interpreted as a point charge with a constant magnetic moment and
an oscillating electric dipole moment. This dipole structure is produced
by the zitterbewegung, which is interpreted as the motion of the point
charge around the center of mass.

The spin is related to the zitterbewegung and also to the rotation of
the particle, and will be expressed in terms of the kinematical variables
as any other observable. It will be unnecessary to postulate torque-
like dynamical equations for the spin variables because its dynamics
is a consequence of the evolution of the kinematical variables, and we

47
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shall obtain torque equations of the usual form that will suggest the
interpretation of the dipole structure of the particle.

1. GALILEI GROUP
The Galilei group is a group of space-time transformations character-

ized by ten parameters g ≡ (b, a, v, αα ). The action of g on a space-time
point x ≡ (t, r) is given by x' = gx, and is considered in the form

as the action of a rotation followed by a pure Galilei transformation
and finally a space and time translation. In this way all parameters that
define each one-parameter subgroup are normal, because the exponential
mapping works. Explicitly

(2. 1)

(2 .2)

(2.3)

(2.4)

(2.5)
(2.6)

and the composition law of the group g" = g'g is:

For rotations we shall alternatively use two different parametrizations.
One is the normal or canonical parametrization in terms of a three vector
α α = α n, where n is a unit vector along the rotation axis, and α ∈ [0, π] is
the clockwise rotation angle in radians, when looking along n. Another,
in terms of a three vector µ = n tan( α /2), which is more suitable to
represent algebraically the composition of rotations.

The rotation matrix R(αα  ) = exp( α α · J ) is expressed in terms of the
normal parameters α i  and in terms of the antisymmetric matrix gener-
ators Ji  which have the usual matrix representation

and satisfy the commutation relations [ J i , J k  ] = ∈ i kl  J l  , such that if we
write the normal parameters α α = α n in terms of the rotation angle α
and the unit vector n along the rotation axis, it is written as

(2.7)
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In the parametrization µ = n tan(α /2), the rotation matrix is

(2.8)
In terms of these variables, R( µ") = R ( µ ') R ( µ) is equivalent to

(2.9)

This can be seen in a simple manner by using the homomorphism be-
tween the rotation group and the group S U (2). The matrix generators
of S U(2) are J = –  i σ /σ /2 in terms of Pauli matrices σ. σ. In the nor-
mal parametrization the rotation matrix exp(α α ⋅ J ) = exp(– iα α ⋅ σ/σ/2) is
written in the form

By defining µ = n tan( α /2), this rotation matrix is expressed as

(2.10)

where is the 2 × 2 unit matrix and in this form we can get the compo-
sition law (2.9). 1

If the rotation is of value π, then eqs. (2.7) or (2.8) lead to

Even if the two rotations R (µ) and R ( µ ') involved in (2.9) are of value π,
although tan(π/2) = ∞, this expression is defined and gives:

The absolute value of this relation leads to tan (α " /2) = tan ,θ, i.e., α " = 2θ
where θ is the angle between the two unit vectors n and n '. We obtain the
known result that every rotation of value α around an axis n can be obtained
as the composition of two rotations of value π around two axes orthogonal to
n and separated by an angle α /2.

For the orientation variables we shall use throughout the book the
early Greek variables α , β, . . . whenever we consider the normal paramet-
rization, while for the tan(α /2) parametrization we will express rotations
in terms of the intermediate Greek variables µ, v, ρρ , . . . .

The neutral element of the Galilei group is (0, 0, 0, 0) and the inverse
of every element is
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The generators of the group in the realization (2.1, 2.2) are the differen-
tial operators

(2.11)

and the commutation rules of the Galilei Lie algebra are

(2.12)

(2.13)

All throughout this book, except when explicitly stated, we shall use
the following shorthand notation for commutators of scalar and 3-vector
operators, that as usual, are represented by bold face characters:

where δi j = δj i is Kronecker’s delta and ∈ i j k is the completely antisym-
metric symbol, so that Latin indexes match on both sides of commuta-
tors.

The group action (2.1)-(2.2) represents the relationship between the
coordinates (t, r ) of a space-time event as measured by the inertial ob-
server O and the corresponding coordinates (t', r ' ) of the same space-
time event as measured by another inertial observer O'. The ten group
parameters have the following meaning. If we consider the event (0, 0)
measured by O, for instance the flashing of a light beam from its origin
at time t = 0, it takes the values (b, a) in O', where b is the time param-
eter that represents the time translation and a is the space translation.
The parameter v of dimensions of velocity represents the velocity of the
origin of the Cartesian frame of O as measured by O', and finally the
parameters α, or R (α), represent the orientation of the Cartesian frame
of O as measured by O'. In a certain sense the ten parameters (b, a, v, αα )
with dimensions respectively of time, position, velocity and orientation
describe the relative motion of the Cartesian frame of O by O'.

The Galilei group has non-trivial exponents given by ²

(2.14)

They are characterized by the non-vanishing parameter m.
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The central extension of the Galilei group 3 is an 11-parameter group
with an additional generator I which commutes with the other ten,

(2.15)

and the remaining commutation relations are the same as above (2.12,
2.13), except the last one which appears as

(2.16)

using our shorthand notation, in terms of a non-vanishing parameter m.
If we define the following polynomial operators on the group algebra

(2.17)

U commutes with all generators of the extended Galilei group and W
satisfies the commutation relations:

so that W 2  also commutes with all generators. It turns out that the
extended Galilei group has three functionally independent Casimir op-
erators which, in those representations in which the operator I becomes
the unit operator, for instance in irreducible representations, are inter-
preted as the mass, M = mI, the internal energy H = H – P /2m, a n d0

2

the absolute value of spin

(2.18)

The spin operator S in those representations in which I = , satisfy the
commutation relations:

i.e., it is an angular momentum operator, transforms like a vector under
rotations and is invariant under space and time translations and under
Galilei boosts, respectively. It reduces to the total angular momentum
operator J in those frames in which P = K = 0.

2. NONRELATIVISTIC POINT PARTICLE
Let us consider a mechanical system whose kinematical space is the

manifold X = G/H, where H is the six-dimensional subgroup of the
homogeneous Galilei transformations of elements of the form (0, 0, v, µ) .
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Then X is a four-dimensional manifold spanned by the variables (t, r ) ≡
x, with domains t ∈ , r ∈ , similar to the group parameters b and3

a respectively. We assume that they are functions of some evolution
parameter and at any instant of the evolution two different inertial
observers relate their measurements by:

(2.19)

(2.20)

Because of the way they transform, we can interpret them respectively
as the time and position of the system. If we assume that the evolu-
tion parameter is group invariant, by taking the –derivative of both
sides of the above expressions, it turns out that the derivatives of the
kinematical variables at any instant transform as:

(2.21)

(2.22)

There are no constraints among these variables. It is only the homogene-
ity of the Lagrangian in terms of their derivatives (1.11) which reduces to
three the number of independent degrees of freedom. This homogeneity
leads to the general form:

(2.23)

where T = and R i are still some unknown functions of
the kinematical variables and their derivatives, which are homogeneous
of zero degree in terms of the derivatives.

Associated to this manifold X, the gauge function for this system is

(2.24)

where the parameter m is interpreted as the mass of the system and
ξ(g, g') is the exponent of G, so that the transformation of the Lagrangian
under the Galilei group is

(2.25)

Then

(2.26)

but from (2.21) and (2.22) we get = 1 and
respectively, and thus

(2.27)
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Similarly
(2.28)

The conjugate momenta of the independent degrees of freedom qi =
r i , are and consequently Noether’s theorem leads to the
following constants of the motion:
a) Under time translations the gauge function (2.24) vanishes, δt =
δb, M = 1, while δri = 0 and the constant reduces to the following
expression
b) Under space translations also α (g; x) = 0,  δ t = 0, M = 0, while

and the conserved observable is R.
c) Under pure Galilei transformations δt = δb and M = 0, while δri =
t δvi and but now the gauge function to first order in the
velocity parameters is and we get m r – R t.
d) Under rotations and  M = 0, while δ r i =

and the conserved quantity is r × R.
Collecting all terms we can give them the following names:

Energy H = – T,  (2.29)

linear momentum P = R = p , (2.30)

kinematical momentum K = mr – P t, (2.31)

angular momentum J = r × P. (2.32)

We reserve for these observables the same symbols as the correspond-
ing group generators which produce the space-time transformations that
leave dynamical equations invariant. Even their names make reference
to the corresponding group transformation parameter, except the en-
ergy which in this context should be called the ‘temporal momentum’.
For the kinematical momentum we can find in the literature alternative
names like ‘Galilei momentum’ or ‘static momentum’. The first because
it is related to invariance of dynamical equations under pure Galilei
transformations or boosts, while the second because for systems of point
particles it reduces to such that for the cen-
ter of mass observer, and therefore it appears as the static
momentum of the masses with respect to the origin of the observer’s
frame. With the habitual definition of the center of mass position it
then reduces to K = m q – t P, where is the total mass of
the system, the total momentum and q the center of mass
position. Being consistent with this notation, we should call it ‘Poincaré
or Lorentz momentum’ in a relativistic approach. Nevertheless we shall
use throughout this book the name of kinematical momentum for this
observable K.
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The linear momentum takes the general expression P = m = m u
because taking the -derivative in (2.31) of the kinematical momentum,

= 0, implies P = m u, where u is the time derivative of the position
of the system, i.e. , the velocity of the particle.

The six conditions P = 0 and K = 0, imply u = 0 and r = 0, so
that the system is at rest and placed at the origin of the reference frame.
There is still an arbitrary rotation and a time translation to fix a unique
inertial observer. Nevertheless we call this class of observers, for which
P = 0 and K = 0, the center of mass observer. These six conditions
will be also used as the definition of the center of mass observer for any
other system even in a relativistic approach.

From (2.27) and (2.28) we see that the energy and linear momentum
transform as:

(2.33)

(2.34)

Then, if H0 and P = 0 are the energy and linear momentum measured
by the center of mass observer, for any arbitrary observer that sees the
particle moving with velocity u, it follows from (2.33) and (2.34) that

The above ten constants of the motion (2.29-2.32) are the generating
functions of the corresponding canonical transformations of the system,
such that on phase space in terms of the generalized coordinates q ≡ r
and their canonical conjugate momenta p, they take the form

(2.35)

Taking the Poisson bracket of these functions we get the following com-
mutation relations

(2.36)

(2.37)
where we have used the same short-hand notation as for commutators.
When compared with relations (2.12), (2.13) and (2.16) they are, up to
a global sign, the same commutation relations of the extended Galilei
group, where the eleventh variable is the constant unit function.
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The internal energy of the system H 2
0 = H – P /2m , which is reduced

to the energy measured by the center of mass observer, is a group in-
variant. In this case it is also a constant of the motion so that it reduces
to a scalar of constant magnitude H 0 , independent of the kinematical
variables and their derivatives, in such a way that H takes the form
H = H + m u 2

0 /2, and therefore the general form of the Lagrangian for
this system, by substituting in (2.23) the corresponding expressions for
T and R , is

(2.38)

Here the last term can be removed because it is a total derivative. This
is equivalent to considering that a Galilei point particle has zero internal
energy or that this invariant H plays no role in the dynamics of this0

system. This part of the Lagrangian also corresponds to the – mc
2 term

of the nonrelativistic limit of the point particle relativistic Lagrangian, as
we shall see in the next chapter. Therefore we have finally obtained the
usual nonrelativistic Lagrangian for the point particle which is uniquely
defined.

If we define the spin of the system, as in (2.18), by

(2.39)

it vanishes, so that the point particle is a spinless system.

3. GALILEI SPINNING PARTICLES
The most general nonrelativistic particle 4 is the system whose kine-

matical space X is the whole Galilei group G . Then the kinematical
variables are the ten real variables with
domains and similarly as the correspond- 
ing group parameters. The relationship between the values x ' ( ) a n d
x ( ) they take at any instant for two arbitrary inertial observers, is
given by:

(2.40)

(2.41)

(2.42)

(2.43)

In a group theoretical language, this can also be interpreted as x ' = g x,
i.e., as the action of the group element g ∈ G acting on the point x
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considered also as another element of the group, to produce the group
element x'. In the above transformations we have considered the group
action on the left, i.e. , x' = g x, where in (2.3-2.6) or (2.9), the unprimed
group element g ≡ ( b, a, v, µ ) is replaced by the unprimed kinemat-
ical variables x ≡ ( t, r, u, ρ )  the double-primed group element g" ≡
(b" , a" , v" , µ") by the primed kinematical variables x'  ≡ (t', r', u', ρ ')
and the g' ≡ ( b', a' , v', µ' ) group element by g ≡ ( b, a , v, µ ). The way
they transform, allows us to interpret them respectively as the time,
position, velocity and orientation of the particle.

Among these kinematical variables there exist the differential con-
straints that together with the homogeneity condi-
tion of the Lagrangian L in terms of the derivatives of the kinematical
variables:

(2.44)

reduce from ten to six the essential degrees of freedom of the system.
These degrees of freedom are the position r (t) and the orientation

ρ (t ) and the Lagrangian depends on the second derivative of r( t) and
the first derivative of ρ(t ). Expression (2.44) is explicitly given by:

(2.45)

where the functions
will be in general functions of the ten kinematical variables

( t, r, u , ρ ) and homogeneous functions of zero degree in terms of the
derivatives . By assuming that the evolution parameter is
group invariant, these derivatives transform under G:

(2.46)

(2.47)

(2.48)

(2.49)

Instead of the derivative that transforms in a complicated way,
we can define the angular velocity of the particle ω as a function of it
in the form

(2.50)

It is a linear function of , with inverse transformation

(2.51)
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linear in ω, and under G it transforms as:

(2.52)

We interpret the rotation matrix R (ρ) as the rotation that carries the
initial frame linked to the body at instant = 0 to the frame at instant

, as in a rigid body. Then, the three columns of matrix R (ρ) represent
the Cartesian components of the three unit vectors linked to the body
when chosen parallel to the laboratory frame at instant = 0.

If k ( ) is any internal vector of a rigid body with origin at point r, then its
dynamics is contained in the  expression The velocity of
point k is

where matrix  Ω = R –1 =  RT is an antisymmetric matrix.  At any instant
where superscript  T  means the transposed matrix

and is the 3 × 3 unit matrix. Taking the -derivative of this expression,
and thus the three essential components of the

antisymmetric matrix Ω  define a three-vector ω

such that we can also write  and ω is inter-
preted as the instantaneous angular velocity. The different components of ω,
expressed as functions of the variables ρ and are given in (2.50).

Expression (2.43) corresponds to R(ρ' ( )) = R ( µ) R(ρ( ). Therefore

and this leads to the equation (2.52) in terms of the essential components
ω of the antisymmetric matrix Ω .

In this way the last part of the Lagrangian (∂L / ∂ can be writen
a s

(2.53)

due to the linearity of ω in terms of and where W i  = ∂ L/ ∂ ωi . Thus
the most general form of the Lagrangian of a nonrelativistic particle can
also be written instead of (2.45) as:

(2.54)
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Since X is a homogeneous space of G we have seen that the most
general gauge function for the group is just the group exponent:

(2.55)

similar to (2.24), and this allows us to interpret the parameter m as the
mass of the system. Under the action of an arbitrary element of the
Galilei group, the Lagrangian L transforms according to:

(2.56)

This leads through some straightforward calculations, similar to the ones
performed in (2.26)-(2.28), to the following form of transformation of the
functions:

(2.57)

(2.58)

(2.59)

(2.60)

The Lagrangian depends on up to the second derivative of r , and
therefore there will be two conjugate momenta of these variables and
another conjugate momentum associated to variables ρ. The general-
ized coordinates will be q 1 ≡ r , q 2 ≡  u = d r / dt, and q 3 ≡ ρ.

The canonical conjugate momenta of the independent degrees of free-
dom ri (t ) and ρ i(t ) are, according to (1.26):

(2.61)

(2.62)

(2.63)

where p r (1) is the conjugate momentum of q 1 , p r ( 2 ) is the conjugate
momentum of q2 , and pρ  that of q3 .

Noether’s theorem defines the following constants of the motion:
a) Under time translation the action function is invariant and as usual
we call the corresponding conserved quantity, the total energy of the
system H . Since δt  = δ b and δq i

( s)
 = 0, M = 1 and M i

(s )  = 0, by
applying (1.55) we have:
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and since W · ω = V · , it turns out that

(2.64)

b) Under spatial translation, A(x1 , x2) is invariant and this defines the
total linear momentum of the system. We have now:

and then

(2.65)

c) Under a pure Galilei transformation of velocity δv, A(x 1, x2 ) is no
longer invariant but taking into account (1.60) and the gauge function
(2.55), it transforms as  and this defines the
total kinematical momentum K, in the following way:

and thus
(2.66)

From  = 0, this leads to P = m u – d U/dt, and thus by identifi-
cation with (2.65), the function R = m u irrespective of the particular
Lagrangian. The total linear momentum does not lie along the velocity
of point r .
d) Finally, under rotations A (x1 , x2 ) remains invariant and the cor-
responding constant of the motion, the total angular momentum
of the system, comes from the infinitesimal transformation of value
δµi =δ α i /2, i.e., half of the rotated infinitesimal angle, and then
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which leads to

and therefore

(2.67)

We are tempted to consider Z as the spin of the system. Since J = 0,
this function Z satisfies dZ/dt = P × u and is not a constant of the
motion for a free particle. We shall define a little later the spin as
a constant angular momentum for a free particle, once we accurately
identify the center of mass of the particle.

i .e. , (2.68)

Then the point q = r – k is moving at constant speed and we say that
it represents the position of the center of mass of the system. Thus,
the observable k = r – q is just the relative position of point r with
respect to the center of mass. Therefore P = 0 and K = 0 give rise
to d q/dt = 0, and r = k, i.e., q = 0, as we pointed out. With this
definition, the kinematical momentum can be written as K = mq – P t ,
similarly as for the point particle case, in terms of the center of mass
position q and the total linear momentum P.

The spin of the system is defined as the difference between the total
angular momentum J and the orbital angular momentum of the center
of mass motion q × P, and thus

The center of mass observer is defined, as before, as that inertial
observer for which P = 0 and K = 0. These six conditions do not
define uniquely an inertial observer but rather a class of them up to
a rotation and an arbitrary time translation. In fact, the condition
P = 0 establishes the class of observers for which the center of mass
is at rest, and K = 0 is the additional condition to locate it at the
origin of coordinates, as we have seen for the point particle case. This
comes from the analysis of (2.66), where k = U /m is an observable with
dimensions of length, and taking the derivative with respect to of both
sides, taking into account that = 0, we have:

(2.69)

It is the sum of two terms, one Z = u × U + W, coming from the new
degrees of freedom and another k × P, which is the angular momentum

The spin S, expressed in terms of the constants of the motion J, K and
P, is also a constant of the motion.
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of the linear momentum located at point r with respect to the center
of mass. Alternatively we can describe the spin according to the last
expression in which the term – k × m dk/dt suggests a contribution of
(anti)orbital type coming from the motion around the center of mass. It
is related to the zitterbewegung or more precisely to the function U =
mk which reflects the dependence of the Lagrangian on the acceleration.
The other term W comes from the dependence on the other three degrees
of freedom ρi , and thus on the angular velocity. This zitterbewegung is
the motion of the center of charge around the center of mass as we shall
see in the next section. Point r, as representing the position of the center
of charge, has been also suggested in previous works for the relativistic
electron. 5

To obtain the dynamical equations from L we have to add the three
differential constraints u = , so that dynamical equations are ob-
tained from the Lagrangian function where the three
unknown functions λ i are the Lagrange multipliers. If we use those
constraints and replace in L all terms containing the u variable by
then the variational derivative with respect to kinematical variable ui
leads to:

because L is now explicitly u i independent, so that the Lagrange multi-
pliers are λ = d U/dt.

Variational derivatives with respect to time and position give rise to
the corresponding Euler-Lagrange equations:

Since L is invariant under translations, because in this case the gauge
function (2.55) vanishes, This implies the exis-
tence of four constants of the motion that are interpreted as the total
energy and linear momentum respectively

and with the identification of the Lagrange multipliers and the function
R = m u, we get again

(2.70)
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Finally, variational derivatives with respect to the orientation vari-
ables lead to

(2.71)

If the Lagrangian is a function of the orientation variables only through
its dependence on the angular velocity ω (ρ, ), this leads to

(2.72)

Indeed, from (2.71) we get

i.e.,

(2.73)

If we multiply each term of (2.73) by i and add all together for i = 1,2,3, since
an-d ω is a linear function of , and therefore 

holds, we get

So that 0, i.e.,  is orthogonal to ω and since the matrix
 is invertible we can separate the term in (2.73) in terms of

W and get (2.72). The different matrix terms of (2.73) are explicitly given by

with j and i as a row and column index, respectively. Thus
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Because J = 0, using (2.72) and the expression of P, (2.65), this
implies the general relation for a free particle

(2.74)

which reflects the fact that velocity, acceleration and angular velocity
are not independent magnitudes, and taking into account that R and
have the same direction, it reduces to

(2.75)

This relation shows that for a free particle, if the function W is in the
direction of the angular velocity, W ~ ω, then, necessarily U is lying
along the direction of the acceleration U ~ . Conversely, if W = a
then U =  a ω, with the same proportionality coefficient a. The internal
motion of the center of charge r and the rotation of the particle are
not completely independent motions. We see that the analysis of (2.75)
shows the possibility of at least two different kinds of particles: One in
which W ~ ω and U ~ or another in which conversely U = a ω a n d
W = a .. More general systems can be obtained by assuming a more
complex structure of both U and W compatible with (2.75).

One important conclusion is that for spinning models in which the
Lagrangian L does not depend on ω, then necessarily U lies along
On the other hand, if L is independent of , then W and ω must be
collinear.

It is the presence of functions U and W in (2.54) that distinguishes
the structure of this particle when compared with the point particle
(2.23) and consequently the spin structure is directly related to these
functions.

4. GALILEI FREE PARTICLE WITH
(ANTI)ORBITAL SPIN

To analyze the spin structure of the particle, and therefore the differ-
ent contributions to spin coming from these functions U and W, let us
consider the following simpler example.

Consider a Galilei particle whose kinematical space is X = G /S O( 3 ) ,
so that any point x ∈ X can be characterized by the seven variables
x ≡ (t, r, u), u = d r/dt, which are interpreted as time, position and ve-
locity of the particle respectively. In this example we have no orientation
variables. The Lagrangian will also depend on the next order derivatives,
i.e., on the velocity which is already considered as a kinematical vari-
able and on the acceleration of the particle. Rotation and translation
invariance implies that L will be a function of only u2 , (d u/dt)2 a n d
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u · d u/dt = d ( u 2/2)/dt, but this last term is a total time derivative and
it will not be considered here.

Since from condition (2.75) U ~ , let us assume that our elementary
system is represented by the following Lagrangian, which when written
in terms of the three degrees of freedom and their derivatives is expressed
as

(2.76)

Parameter m is the mass of the particle because the first term is gauge
variant in terms of the gauge function (2.55) defined by this constant
m, while parameter ω of dimensions of time –1 represents an internal
frequency. It is the frequency of the internal zitterbewegung. In terms
of the kinematical variables and their derivatives, and in terms of some
group invariant evolution parameter , the Lagrangian can also be writ-
ten as

(2.77)

where the dot means -derivative. If we consider that the evolution
parameter is dimensionless, all terms in the Lagrangian have dimensions
of action. Because the Lagrangian is a homogeneous function of first
degree in terms of the derivatives of the kinematical variables, L can
also be written as

(2.78)

where the functions accompanying the derivatives of the kinematical
variables are defined and explicitly given by

(2.79)

(2.80)

(2.81)

(2.82)

Dynamical equations obtained from Lagrangian (2.76) are:

whose general solution is:

in terms of the 12 integration constants A, B, C and D.
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When applying Noether’s theorem to the invariance of dynamical
equations under the Galilei group, the corresponding constants of the
motion can be written in terms of the above functions in the form:

Energy H = – T – u · (2.83)

linear momentum P = R – = mu  – (2.84)

kinematical momentum K = mr  – P t – U , (2.85)

angular momentum J = r × P + u × U . (2.86)

It is the presence of the U function that distinguishes the features of
this system with respect to the point particle case. We find that the
total linear momentum is not lying along the direction of the velocity
u, and the spin structure is directly related to the dependence of the
Lagrangian on the acceleration.

If we substitute the general solution (2.82) in (2.83-2.86) we see in
fact that the integration constants are related to the above conserved
quantities

(2.87)

(2.88)

(2.89)

(2.90)

We see that the kinematical momentum K in (2.85) differs from the
point particle case (2.31) in the term –U, such that if we define the
vector k = U /m, with dimensions of length, then = 0 leads from
(2.85) to the equation:

and q = r – k, defines the position of the center of mass of the particle
that is a different point than r and using (2.80) is given by

(2.91)

In terms of it, dynamical equations (2.81) can be separated into the
form:

(2.92)

(2.93)
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where (2.92) is just eq. (2.81) after twice differentiating (2.91), and
Equation (2.93) is (2.91) after collecting all terms on the left hand side.

From (2.92) we see that point q moves in a straight trajectory at
constant velocity while the motion of point r, given in (2.93), is an
isotropic harmonic motion of angular frequency ω around point q.

The spin of the system S is defined as

(2.94)

and since it is written in terms of constants of the motion it is clearly
a constant of the motion, and its magnitude S 2 is also a Galilei invari-
ant quantity that characterizes the system. In terms of the integration
constants it is expressed as

S = – mω C × D . (2.95)

From its definition we get

(2.96)

which appears as the (anti)orbital angular momentum of the relative
motion of point r around the center of mass position q at rest, so that
the total angular momentum can be written as

J = q × P + S = L + S . (2.97)

It is the sum of the orbital angular momentum L associated to the
motion of the center of mass and the spin part S. For a free particle
both L and S are separately constants of the motion. We use the term
(anti)orbital to suggest that if vector k represents the position of a point
mass m, the angular momentum of this motion is in the opposite direc-
tion as the obtained spin observable. But as we shall see in a moment,
vector k does not represent the position of the mass m but rather the
position of the charge e of the particle.

By using the dynamical equations (2.92-2.93), the total energy can be
cast into the form:

(2.98)

where the internal energy

(2.99)
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is also expressed in terms of the relative vector k, and is also a constant
of the motion. It is negative definite as it corresponds to the bounded
motion of point r around the center of mass q. It is in fact the total
mechanical energy of the harmonic oscillator that represents the internal
zitterbewegung.

In general the zitterbewegung is a plane and closed elliptic orbit and
we can also obtain circular trajectories. In the relativistic case we shall
obtain more complex trajectories that can be interpreted as a kind of
precessing ellipses in the trajectory plane.

Once we introduce the classical free path into the free Lagrangian and
integrate from the initial to the final point, we obtain the action function
for the free system along this path that can be written in terms of the
boundary end point kinematical variables in the form

where  ∆ = 2(1 – cos ω(t 2 – t 1 )) –  ω(t2 – t 1 )sin  ω(t 2 – t 1 ). This is
the action function that must be considered when analyzing Feynman’s
kernel in the path integral approach of this system. We observe in this
case that the additional kinematical variables u, with respect to the
point particle case, are non-compact variables. The variational boundary
value problem and the Newtonian boundary values at initial time t1 can
be expressed in terms of each other.

4.1 INTERACTING WITH AN EXTERNAL
ELECTROMAGNETIC FIELD

But if q represents the center of mass position, then what position
does point r represent? Point r represents the position of the charge of
the particle. This can be seen by considering some interaction with an
external field. The homogeneity condition of the Lagrangian in terms
of the derivatives of the kinematical variables leads us to consider an
interaction term of the form

(2.100)

which is linear in the derivatives of the kinematical variables t and r
and where the external potentials are only functions of t and r. We can
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also consider more general interaction terms of the form N ( t, r, u) ·
and also more general terms in which functions φ and A also depend on
u a n d . But this will be something different than an interaction with
an external electromagnetic field. At this stage of the formalism our
challenge is to describe at least the electromagnetic properties of matter
related to the spin structure so that those more general interaction terms
will not be considered here.

Dynamical equations obtained from L + L I a r e

(2.101)

where the electric field E and magnetic field B are expressed in terms
of the potentials in the usual form, E = – ∇ φ – ∂A / ∂ t, B = ∇ × A .
Because the interaction term does not modify the dependence of the
Lagrangian on , the function U = mk has the same expression as in the
free particle case. Therefore the spin and the center of mass definitions,
(2.96) and (2.91) respectively, remain the same as in the previous case.
Dynamical equations (2.101) can again be separated into the form

(2.102)

(2.103)

where the center of mass q satisfies Newton’s equations under the ac-
tion of the total external Lorentz force, while point r still satisfies the
isotropic harmonic motion of angular frequency ω around point q. But
the external force and the fields are defined at point r and not at point
q. It is the velocity u of point r that appears in the magnetic term of
the Lorentz force. Point r clearly represents the position of the charge.
In fact, this minimal coupling we have considered is the coupling of the
electromagnetic potentials with the particle current, that in the rela-
tivistic case can be written as jµ A µ , but the current j µ is associated to
the motion of a charge e at point r.

This charge has an oscillatory motion of very high frequency ω that,
in the case of the relativistic electron (see Sec.4.2 of chapter 3), is ω =

The average position of the charge is the
center of mass, but it is this internal orbital motion, usually known as
the zitterbewegung, that gives rise to the spin structure and also to the
magnetic properties of the particle, as we shall see later.

When analyzed in the center of mass frame (see Fig. 2.1), q = 0,
r = k, the system reduces to a point charge whose motion is in general
an ellipse, but if we choose C = D, and C · D = 0, it reduces to a circle
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Figure 2.1. Charge motion in the C.M. frame.

of radius a = C = D, orthogonal to the spin. Then if the particle has
charge e, it has a magnetic moment that according to the usual classical
definition is: 6

(2.104)

analysis later when we study the elementary relativistic particles.

point out and compare with Dirac’s relativistic analysis of the electron, 7

in which both momenta µ and d appear, giving rise to two possible
interacting terms in Dirac’s Hamiltonian. We shall come back to this

motion. Although this is a nonrelativistic example it is interesting to

where j = e δ3(r – k )dk /dt is the current associated to the motion of
a charge e located at point k . The magnetic moment is orthogonal to
the zitterbewegung plane and opposite to the spin if e > 0. It also has
a non-vanishing oscillating electric dipole d = ek, orthogonal to µ  and
therefore to S in the center of mass frame, such that its time average
value vanishes for times larger than the natural period of this internal

4 .2 CANONICAL ANALYSIS OF THE
SYSTEM

Although the Lagrangian (2.76) depends on second order derivatives
we can develop the corresponding canonical formalism. Starting from
the Lagrangian (2.76)
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where  now the dot means time derivative, we have in this case six gen-
eralized coordinates that are the three degrees of freedom q 1 ≡ r and
their first derivatives q 2 ≡ d r/dt, such that the conjugate momenta are,
according to (1.26),

The phase space is a 12-dimensional manifold and the Hamiltonian is in
fact the total energy written in terms of the canonical variables

Hamilton-Jacobi equations are

The ten Noether constants of the motion become in this formalism the
generating functions of the corresponding canonical transformations of
time and space translations, pure Galilei transformations and rotations.
They are explicitly given by

Since the Poisson bracket of two constants of the motion is again a
constant of the motion, we obtain that the above constants of motion
satisfy the following commutation relations

where { . , .} is the corresponding Poisson bracket. Because {K
i
, P j } ≠ 0

they are not the commutations relations of the Galilei group but rather
those of the extended Galilei group. 8  It is interesting to compare them
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with the commutation relations (2.12), (2.13) and (2.16). Although Ki
satisfies  { K , H } = Pi i, it is a constant of the motion because, as we
see in (2.85), K is time dependent and its total time derivative in the
canonical approach is

The center of mass position defined by q ≡ (K + Pt)/m satisfies

Therefore, the q are not canonical variables. It is not possible to find
in general a canonical transformation that changes the center of charge
position q1 for the center of mass q as new canonical variables. To
do so we shall need also to replace the q 2 variables. This feature will
be analyzed later in Chapter 6 when considering the description of the
position operator in quantum mechanics.

The spin observable S = J – K  × P /m = q 2 × p  
2

 +  p2  × p1 / m satisfies
the Poisson bracket commutation relations

showing respectively that it is an angular momentum, that transforms
like a vector under rotations, and it is invariant under space translations
and pure Galilei transformations and is a constant of the motion. If we
had taken in expression (2.86) the angular momentum J = r × P + Z ,
w i t h  Z = u × U = q

2 
× p 2 

, then this observable satisfies

But

It satisfies the Poisson brackets of an angular momentum, transforms
like a vector under rotations, and is invariant under space translations
but not under pure Galilei transformations. It is not a constant of the
motion. It satisfies the dynamical equation dZ/dt = P × u . That is
why this observable cannot be considered as the spin of the system. We
mention this here because in the quantum case this is precisely the spin
observable equivalent to Dirac’s spin operator of the electron. Dirac’s
spin observable satisfies the dynamical equation dS/dt = P × c αα, w h e r e
c α      matrices play the role of the velocity operator u in Dirac’s theory.
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We thus see again that the two constants of the motion

(2.105)

commute with the above ten generators and they are Galilei invariant
properties of the particle, that together with the mass m completely
characterize the structure of this particle. They are the three function-
ally independent Casimir invariants of the extended Galilei group. In
fact H 0 is the Galilei internal energy of the particle and S2 the square
of the spin.

4 .3 SPINNING PARTICLE IN A UNIFORM
MAGNETIC FIELD

Let us consider in detail the interaction of this model of particle with
spin of orbital nature in an external uniform magnetic field B . It is
an exercise that can be solved explicitly. The advantage of a model
defined in terms of a Lagrangian function is that we do not need to
state any dynamical equation for spin, because the spin is a function of
the independent degrees of freedom and therefore its dynamics can be
obtained from them. The result is that we shall obtain as a first order
approximation a torque equation of the usual form dS/dt = µ ×  B , when
the magnetic moment µ is properly interpreted in terms of the charge
motion.

In this case, the system of equations (2.102-2.103) reduces to

With the definition of the variables v = dq/dt, it is equivalent to a linear
system of twelve differential equations of first order for the components
of r , u , q and v . If we define a new dimensionless time variable = ωt ,
then the above system depends only on the dimensionless parameter
a = eB/mω which is the quotient between the cyclotron frequency |ωc| =
eB/m and ω, the natural frequency of the internal motion.

By taking the direction of the uniform magnetic field along the O Z
axis, the external force is orthogonal to it. Then if we call q3  and r 3
the corresponding coordinates along that axis of the centre of mass and
center of charge, they satisfy

(2.106)

whose general solution in terms of the initial data q3 (0), r3 (0), v3 (0) and
u3 (0) is

(2.107)
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(2.108)
Similarly, the other components of the center of mass in terms of the
new time variable are

and once integrated we get

(2.109)

(2.111)

The matrix of this linear system in terms of the variables q 1 , q2 , r 1,
r 2, u 1 and u 2 , taken in this order, is just

whose characteristic equation is λ6 + 2 λ 4 + λ 2 + a 2 = 0. It is shown
that it has six different roots, corresponding to the normal modes of the
system. If we call λ = iz, these new variables verify z 2 (1 – z 2 )2 = a2 ,
and thus by solving the cubic equation z(1 – z 2 ) = a, the six solutions
of the form ±iz will be the six eigenvalues of the system. If we define

then the six eigevalues are ± iωj , j = 1, 2, 3, where:

(2.113)

where b1 and b 2 are two integration constants with dimensions of length.
Thus we are left with the integration of a first order system formed by
these two last equations (2.109) and the equations for the other two
components of the center of charge that can be written as

(2.110)

(2.112)
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If  then the six roots are purely imaginary and the motion
is three-periodic with these three frequencies. Otherwise, if there exist
real roots, the corresponding solution will be exponential. In general,
for the electron, as we shall see in the next chapter, the zitterbewegung
frequency is ω = 2mc2/ , and thus

so that even with very strong magnetic fields the parameter a is very
small and the usual solution will be oscillatory.

The general solution of the complete system will be a linear combina-
tion of these three oscillations and it will depend on twelve integration
constants that will be expressed in terms of the initial position and ve-
locity of the center of mass and center of charge. The general form for
the evolution of the center of charge is:

where

For the center of mass coordinates we get

The six unknown constants A, B, C, D, E, and F are of dimensions of
length and satisfy the linear system



NONRELATIVISTIC ELEMENTARY PARTICLES 7 5

and

where q(0), v(0) and r (0), u(0), are respectively the position and veloc-
ity of the center of mass and center of charge at time t = 0.

If we call N the inverse of the matrix containing the frequencies of
the above equations, it is:

the final expression of the integration constants in terms of the initial
conditions.

where ∆  = (ω1 – ω2 ) ( ω2 – ω3 ) ( ω3 – ω1 ), in such a way that we can obtain

To lowest order in a , since k ≈ , the normal modes are:

(2.114)
These frequencies will be compared in Section 2.5 of Chapter 5 with those
of Barut-Zanghi relativistic model. In terms of the physical parameters
and in the time evolution description, these normal frequencies are to
lowest order:

(2.115)

| on the OX axis and the angular

The initial position of the center of charge is characterized by the three
parameters φ, θ and ψ , where θ and φ  represent the initial orientation

where ωc = eB/m and ω are the cyclotron and zitterbewegung frequency,
respectively.

To properly characterize these initial values in terms of physical pa-
rameters, like the radius of the internal motion R0, the cyclotron radius
Rc, the center of mass velocity v and the zitterbewegung frequency ω,
let us consider an electron that is sent with a velocity v orthogonal to
the external uniform magnetic field B. We take the XOY plane such
that the initial position of the center of mass is on the OX axis at the
coordinate Rc = – vm/eB, and the initial velocity v along the positive
direction of the OY axis. With this convention, the center of mass will
have a precession around the OZ axis with cyclotron angular velocity
| ωc| in the positive direction while for a positive charged particle the
initial position will be chosen as – |Rc

velocity will point in the negative OZ axis.
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of the internal angular velocity ω, and parameter ψ is the initial phase
position of the center of charge as shown in Figure 2.2. If all these three
parameters are zero, ω is pointing along OZ and the initial position of
the charge is at point R c  + R O  on the OX axis.

We thus have as initial conditions for our system, written in column
matrix form:

Figure 2.2. Initial phase ψ of the charge and initial orientation ( θ, φ ) of angular 
velocity ω.

where Ro z (α ) will represent a rotation in the active sense, of value α 
around the OZ axis. Since the spin is opposite to the internal angular
velocity, its initial value is

(2.116)
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where S = m ωR
2

Thus the initial conditions to determine the coeffi-0.
cients of the general solution are:

where Rc = –vm/eB, ωc  = –eB/m = –a ω , as before and the constant
parameters:

α = – sin φ cos θ sin ψ  + cos φ cos ψ,
β = cos φ cos θ cos ψ – sin φ sin ψ ,
γ = – cos φ cos θ sin ψ – sin φ cos ψ ,
δ = sin φ cos θ cos ψ + cos φ sin ψ .

To lowest order in a, the frequencies become:

and thus the inverse matrix N to order O (a2) is

In this way the coefficients of the general solution, to first order in a,
are:
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and the coefficients

parameter A, and the remaining terms depend on the internal radius

The general solution, neglecting terms of the order  aR0 , can be written
in a vector form as:

This motion depends on the cyclotron radius Rc , only through the

R 0.

where is the 3 × 3 unit matrix and R(φ,θ, ψ ) ≡ Roz(φ)Roy(θ) R o z (ψ ). 
The first two terms represent the center of mass motion to this order
of approximation, while the third is precisely the relative motion of the
center of charge around the center of mass. The neglected contribution
of order aR 0 can be written as

where

is the 3 × 3 generator of rotations around the OZ axis. The first two terms
represent the correction to this order of the center of mass motion and
the third is the correction of the internal relative motion. The presence
of the generator Jz in this term means that this correction does not make
any contribution to the motion along the OZ axis. The solution along
OZ is exactly:

(2.117)
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(2.120)

i.e., a harmonic motion of amplitude R 0 sin θ, and frequency ω.
The relative position of the center of charge with respect to the center

of mass verifies:

(2.118)

and if we neglect contributions to order aR 0 , it just reduces to the first
term

(2.119)

that represents an oscillation with the natural frequency ω of the zitter-
bewegung around the initial spin axis, with a backwards precession with
an angular velocity ωc / 2 .

Figure 2.3. Motion of the center of charge and center of mass of a negative charged
particle in a uniform magnetic field. The velocity of the center of mass is orthogonal
to the field.

The center of charge and center of mass trajectory is depicted in
Figure 2.3, where the curly trajectory is the motion of the charge.

To study the spin dynamics, we just substitute the general solution
in its analytical definition
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where we need to calculate the derivative of (2.119). To calculate this
derivative, we have to take into account that

and therefore

By taking the derivative of (2.119) we get the following terms:

where

(2.122)

Of these terms, the first is of order ωc R0 = v R0 / Rc = aωR 0 = ac, and
thus even with very high magnetic fields it can be neglected.

The spin dynamics is reduced to

(2.121)

(2.123)

(2.124)

that can be expressed as:

The energy of the system is

where S (0) is given in (2.116). The spin is precessing backwards with
half the angular velocity of the cyclotron motion while its absolute value
remains constant at first order. We represent in Figure 2.4 its evolution
during the same time interval as the one depicted in Figure 2.3 with
the initial orientation θ = 30° and φ = 90°, where we can observe, in
addition to the precession of constant absolute value, a tiny oscillation
of the next order contribution.
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Figure 2.4. Precession of spin around the OZ axis.

and, since function V (r , t) = 0 in the presence of a constant magnetic
field, it becomes:

(2.125)

To lowest order the contribution comes from

Thus

in such a way that taking into account (2.118) and (2.121)
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Since

where

then

Consequently

Because
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if we write ω in terms of the parameter a , ωc c = – aω, in the case
of the electron ωR0 = c , the energy of this system to lower order of
approximation in a is:

The lowest order of the interaction energy can be expressed as:

(2.126)

and since S = m ωR2 = m c2 / ω, S = – S cos θ, it implies0 z

(2.127)

o r
(2.128)

The interaction energy can also be written as

(2.129)

i . e ., as the scalar product of the spin and the angular velocity of preces-
sion of the spin.

From a simpler method, if assumed that the relation between the spin and
magnetic moment is given by (2.128), and that the variation of the intrinsic
angular momentum is governed by the torque equation

The constant angular velocity of precession of spin is Larmor’s angular fre-
quency

because ωc = – e B / m, i.e. , half and opposite to the cyclotron angular veloc-
ity. This produces the first order contribution because the spin conserves its
absolute value. However, this simpler assumption does not contain the addi-
tional terms or corrections to the normal modes ωi , which can be relevant in
high energy processes, and can be obtained from the general solution.



84 KINEMATICAL THEORY OF SPINNING PARTICLES

4 .4 SPINNING PARTICLE IN A UNIFORM
ELECTRIC FIELD

If the external field is a uniform electric field E, pointing for instance
along the OZ axis, the dynamical equations are:

(2.130)

(2.131)

whose solution in terms of the initial boundary conditions for the position
and velocity of both center of mass and center of charge is for the center
of mass variables

Here, as before, we write v = d q / dt and u = d r / dt , and thus

The center of mass has a motion with uniform acceleration along the
field direction while the center of charge experiences a harmonic motion
of frequency ω around the center of mass.

The zitterbewegung is governed by the dynamical equation

obtained by substracting (2.130) from (2.131). It has the general solution

and therefore is a motion not contained in the initial plane spanned
by the vectors k (0) and (0), but also includes a contribution in the
direction of the external field.

The spin dynamical equation is
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It is the torque of the electric dipole d = ek with the electric field. It
reduces to

The end point of the spin vector describes in general an ellipse contained
in a plane orthogonal to the external field E , and generated by the two
fixed directions k (0) × E and (0) × E . Therefore the absolute value of
spin is no longer a constant of the motion but it has a bounded average
value.

4.5 CIRCULAR ZITTERBEWEGUNG
Another example of particles with the same kinematical space X =

G/ SO (3) and therefore kinematical variables t , r and u is given by the
following Lagrangian

(2.132)

which satisfies the homogeneity condition of first order in the derivatives
of the kinematical variables and that U ~ The constant parameter
R is going to be the constant radius of the circular zitterbewegung.
The first term in the Lagrangian (2.132) is a gauge variant term with
the same gauge function as in the previous Galilei examples, while the
second term is Galilei invariant.

In this case, the center of mass position is defined, as in (2.91), by

that satisfies d2 q /dt 2 = 0, while for the relative position k = r – q w e
get the dynamical equation

(2.133)

opposite to the acceleration and of absolute value |k | = R . The internal
motion is of constant radius. Therefore the internal motion for the center
of mass observer is a circle of radius R at a constant speed. The spin
is also orthogonal to this plane with the same relative orientation as
an (anti)-orbital angular momentum S = u × U = – m R u ×
and where is a Galilei invariant unit vector in the direction of the
acceleration. Once the spin of the system is fixed, the internal velocity
is just | d k /dt | = S / m R .
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The total energy and linear momentum are still given by (2.83) and
(2.84) respectively, so that the internal energy of this system reduces to

in terms of the internal velocity and a difference with the other example
(2.99) is the absence of the ‘elastic term’ proportional to k2 that in this
case is a true constant. The internal energy of this Galilei system does
not supply any additional intrinsic property to the basic ones of spin
S, internal radius R and mass m , and the zitterbewegung frequency is
given by |dk / dt | / R = S / m R 2 .

When comparing this system with the other one (2.76) it looks simpler
because it is not necessary to fix the lengths of the two axes of the
internal elliptic motion as in the mentioned example.

5 . SPINNING GALILEI PARTICLE WITH
ORIENTATION

Another simple example of spinning particles is the one in which the
spin is related only to the angular variables that describe orientation.

Let us assume now a dynamical system whose kinematical space is
X = G / where ≡ { , +} is the 3-parameter Abelian subgroup
of pure Galilei transformations. Then, the kinematical variables are
x ≡ ( t, r , ρ),  which are interpreted as the time, position and orientation
respectively.

The Lagrangian for this model takes the general form

Because of the structure of the exponent (2.14), the gauge function for
this system can be taken the same as before. The general relationship
(2.75) leads to W × ω = 0, because the Lagrangian is independent of

, and therefore W and ω must be collinear. According to the trans-
formation properties of the Lagrangian, the third term W · ω is Galilei
invariant and since W and ω are collinear, we can take W ~ ω and one
possible Lagrangian that describes this model is of the form:

The different Noether’s constants are

(2.134)
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where u = d r/dt is the velocity of point r , and Ω = ω / is the time
evolution angular velocity. Point r is moving at a constant speed and
it also represents the position of the center of mass. The spin is just
the observable S ≡ W that satisfies the dynamical equation dS / dt =
ω × S = 0, and thus the frame linked to the body rotates with a constant
angular velocity Ω.

This system corresponds classically to a rigid body with spherical
symmetry where the orientation variables ρ can describe for instance,
the orientation of its principal axes of inertia in a suitable parametriza-
tion of the rotation group. This is a system of six degrees of freedom.
Three represent the position of the center of charge r and the other
three ρ, represent the orientation of a Cartesian frame linked to that
point r . Since for this system there is no dependence on the acceler-
ation, the centers of mass and charge will be represented by the same
point. Spherically symmetric rigid bodies are particular cases of Galilei
elementary particles, but as we shall see in next chapter they cannot be
considered as elementary particles in the relativistic approach because
this seven-dimensional kinematical space is no longer a homogeneous
space of the Poincaré group.

The spin takes the constant value S = I Ω, whose absolute value
is independent of the inertial observer and also the angular velocity
Ω = ω / is constant. The parameter I plays the role of a principal
moment of inertia, suggesting a linear relationship between the spin
and the angular velocity, which corresponds to a particle with spherical
symmetry. The particle can also be considered as an extended object of
gyration radius R0 , related to the other particle parameters by I = m R 2

 0 .

In the center of mass frame there is no current associated to this par-
ticle and therefore it has neither magnetic nor electric dipole structure.
As seen in previous examples, all magnetic properties seem therefore to
be related to the zitterbewegung part of spin and are absent in this rigid
body-like model.

6 . GENERAL NONRELATIVISTIC
SPINNING PARTICLE

We have seen in previous examples the partial structure of spin ac-
cording to the dependence of the Lagrangian either on the acceleration
or on the angular velocity. Coming back to the most general case, if the
Lagrangian depends on both magnitudes, then one possibility is

(2.135)
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in terms of three parameters m , b and β . Parameter m represents the
mass of the system because the first term is gauge variant in terms of
the gauge function (2.55), which depends on this parameter while the
other two terms are Galilei invariant. One expects, by comparing with
the previous examples, that b ~ I will be related to a moment of inertia
and b /β 2 ~ m / ω2 with the zitterbewegung frequency ω. In general
these three parameters will be finally expressed in terms of the three
invariants of the extended Galilei group mass m , spin S and internal
energy H 0 .

Observables U and W will be

where Ω = ω / is the angular velocity in a time evolution, while ω is
the angular velocity in the arbitrary evolution. The dynamics of W
reduces to d W /d = ω × W , and thus Ω is a constant vector. In the
center of mass frame U = m k , so that the zitterbewegung equation in
the center of mass frame is

(2.136)

The spin of this system, according to (2.69) takes the form

related to the zitterbewegung and to the angular velocity of the particle
which is a constant arbitrary vector. In the center of mass frame the spin
is a constant of motion and thus the above zitterbeweung trajectory
(2.136) is a plane motion of angular frequency ( mβ2 /b) 1/2 orthogonal to
the conserved vector u × U . The zitterbewegung motion is independent
of the rotation of the body frame. It turns out that, in addition to some
internal elliptic trajectory, the body frame linked to the point r is rotat-
ing with a constant angular velocity. In a particular circular trajectory
the different observables will have the relative orientation depicted in
Figure 2.5, where vector ω and thus W may have any orientation.

But we can also have Lagrangians of the form

(2.137)

where the parameter b will be expressed in terms of the internal radius
of the zitterbewegung R0 and the internal velocity β of this motion or in



NONRELATIVISTIC ELEMENTARY PARTICLES 89

Figure 2.5. Representation of observables U, W and Z in the center of mass frame.

terms of the spin and internal energy, thus suggesting a kind of system
for which there is a fixed internal energy-spin ratio.

For this system

and Z ≡ u × U + W = a( u × Ω + du/dt).
Total linear and kinematical momentum are constant and take the

values

in such a way that in the center of mass frame P = K = 0, the posi-
tion of the charge with respect to the center of mass is k = (a/m) Ω .
B u t  and so that the
constant spin vector (2.69) is

(2.138)

It also has two parts, one of (anti)orbital nature related to the zitterbe-
wegung Y, which is not orthogonal to the trajectory, and another W
related to the variation of the angular velocity which is not a constant
of the motion. The angular velocity of the body is directed along the
relative position vector k between the centers of mass and charge.

If we take the constant spin in the center of mass frame along the
negative direction of the OZ axis, solutions of equations (2.138) can be
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Figure 2.6. Zitterbewegung of system described by Lagrangian (2.137), showing the
relation between the spin observables S, Y and W .

found such that Ω is of constant modulus, with a constant component
Ωz which is precisely the angular velocity of precession. This motion is
the same as the motion of a free rigid body with a symmetry axis.

The structure of the above Lagrangians is suggested by the corre-
sponding relativistic version to be explored in the next chapter, where
possible Poincaré invariant terms are of the form ω  – α  and ω . α, a n d²²

α is a vector function of the acceleration

6 . 1  C I R C U L A R  Z I T T E R B E W E G U N G
As we have seen we can also form first order Galilei invariant terms

of the form  and , where in the first case parameter

β plays the role of the constant velocity of internal zitterbewegung. We
can thus consider a Lagrangian of the form

(2.139)

and because ω is linear in it is also homogeneous of first order in
terms of the derivatives. It depends on two arbitrary parameters m and
b and a third one β that will be identified later with the velocity of the
charge in the center of mass frame.

Observables U and W are given by
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Because dynamical equations for the orientation variables reduce to
dW/ dt= ω×W = 0, W is a vector which is constant in time. There-
fore, by squaring this vector we get that ²/ ω² is also a constant of
the motion. Dynamical equations for the position in the center of mass
frame are mr – U = 0, and thus

and by squaring anew this variable we also reach the conclusion that r ²
is also a constant of the motion in the center of mass frame and thus
it represents a circular zitterbewegung of radius R 0 . Therefore if we

choose are constant magnitudes and ω is also
a constant vector. Then we also get a circular zitterbewegung, even with
a spin contribution coming from the rotation of the body frame, that in
the limit when ω→ 0 gives rise to the model explored in Section 4.5.

Since in this frame the spin is also a constant of the motion it is
expressed as the sum of two conserved vectors, one orthogonal to the
zitterbewegung plane Y = u × U and another W that, being a constant
vector, can have any arbitrary orientation as the one depicted in Figure
2.5.

Another example with internal circular zitterbewegung which does
not reduce to the previous system analyzed in Section 4.5 in the limit
ω → 0, is given by the Lagrangian

Observables U and W are given

In the center of mass frame the position of the charge is

(2.140)

and since the dependence on the orientation variables is only through
the angular velocity we have dW/d = ω  × W, which gives rise to

(2.141)

after replacing ω with its expression in terms of k from (2.140). Also
from (2.140), by taking the scalar product with we can express
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and if we replace this on the left-hand side of (2.141) and differentiate
with respect to  we get

and making the scalar product of both sides with k we reach  u · = 0.
Therefore the internal motion in the center of mass frame is a circle at a
constant velocity u. In this frame the spin is also constant and reduces
to the function S = u × U + W that takes the expression

which is orthogonal to the zitterbewegung plane, and in this case the
center of mass is not exactly the center of the circle, as can be seen in
the figure.

In this example we also have that the angular velocity is of constant
modulus and precess around the spin direction with constant angular
velocity, as in the previous example.

6 .2 CLASSICAL NON-RELATIVISTIC
GYROMAGNETIC RATIO

Particular but interesting examples are those in which total spin and
magnetic moment have the same direction. This amounts to the exis-
tence of a linear relation between the zitterbewegung part Y and the
total spin S, so that when analyzed in the center of mass frame Y and
W are parallel or antiparallel vectors. From the Lagrangian

a particular solution is the one depicted in Figure 2.7(a), where W >
Y, and thus total spin is orthogonal to the zitterbewegung plane but
opposite to the zitterbewegung spin Y. The Lagrangian

which is defined whenever Y > W, gives rise to a spin directed along Y
as in Figure 2.7(b).

If, as we have seen in previous examples, the magnetic moment is
produced by the particle current, then it is related to the zitterbewegung
part of the spin by
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Figure 2.7. Positive charged particles with parallel (a) and antiparallel (b), spin and
magnetic moment.

But when measuring the angular momentum of the particle it is not
possible to separate the two spin parts, so that what is measured is the
total spin part S. If we call g = Y /S the ratio between the absolute
value of these two spin observables, then for Lagrangian L and for a1

positive charged particle e > 0, the magnetic moment is written as

while for Lagrangian L
2

It is easy to see that the invariant parameters bi and β for these examples
reduce to

7 .  INTERACTION WITH AN EXTERNAL
FIELD

For a general Lagrangian system with some external interaction, we
shall assume that the total Lagrangian is of the form L = L0  + L , whereI

L0 ( ω) is a general Lagrangian for a free system, and we shall con-
sider as a particular case the one analyzed in the example (2.77). It does
not depend explicitly on t and r ; we shall assume that the dependence
on orientation variables is only through its dependence on angular ve-
locity ω and that whenever the variable u appears it is understood to
be replaced by  For the interaction term we shall consider the same
minimal coupling L ( t ,r , ) as in (2.100).I

The total Lagrangian can be written as
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The only difference with the free particle case is contained in the terms
T = T  + T  and R = R  + R , with T0 I 0 I I  = –eφ and R I  = eA, respec-
tively. Because the interaction term L is not an explicit function ofI

and ω, the functions T , R  = mu, U and W have the same expressions0 0

as in the free case.
If the interaction term LI is Galilei invariant, then the Noether con-

stants of the motion will have a part coming from L which we call the0

mechanical part and represent it with a subindex m, and another part
coming from LI . They take the form

The corresponding ‘mechanical’ observables have the same analytical ex-
pressions in terms of the kinematical variables and their time derivatives
as in the free particle case.

In general, the interaction term LI will not be translation invari-
ant and therefore the above observables are no longer constants of the
motion. Their time variation is obtained by the corresponding Euler-
Lagrange equation, such that for the energy it gives

Thus we get

(2.142)

and therefore the variation of the mechanical energy is the work of the
external electric field along the charge trajectory.

For the linear momentum we get

so that

(2.143)

because the definition of the center of mass position (2.91) is unchanged.
We get again Newton’s dynamical equations for the center of mass po-
sition q but with the fields defined at the charge position r.
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Dynamical equations for the orientation variables are the same as in
the free case (2.72) and have the form

(2.144)

As seen in (1.17) all these dynamical equations are not independent.
They are related by:

suggesting that

and where Ω = ω/ is the angular velocity in a time evolution description
instead of the evolution in terms of parameter . For those systems for
which W satisfies (2.144) we have that ω · d W / dt = 0, and thus

For the relative position vector k = r – q, we get

(2.145)

in terms of the external Lorentz force. The spin is expressed as in (2.69)

by

and taking into account (2.145) its dynamics is

In the particular case where W ~ ω it reduces to the torque of the
external force applied at point r, with respect to the center of mass, and
therefore, both electric and magnetic fields produce a change in the spin
of the particle.

If the electric field is conservative, then the change of the mechanical
energy (2.142) between two arbitrary points of the charge trajectory is
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after expanding the potentials around the center of mass position, and
considering that |k| is very small. By rearranging terms we see that the
sum of the mechanical and potential energy is conserved, as it corre-
sponds to a time-independent interaction. The particle, in the presence
of an electrostatic field, has a potential energy of value eφ(q) – d · E (q)
and therefore it behaves like a point particle of charge e and an intrinsic
electric dipole moment d = ek at the center of mass q, although this
dipole is oscillating with very high frequency and its time-average value
vanishes.

The time variation of the total angular momentum is

Let us define the center of mass observer by q = 0 and d q/dt = 0.
Consider the simpler case where dW/dt = 0 or the analyzed example
with (anti)orbital spin where W = 0. If the external fields are smooth
enough, at least in a region larger than the radius of the zitterbewegung,
we take for the vector potential the expression A = B × r / 2 in terms
of a constant vector B, and the above equation in the center of mass
frame is written as

By arranging terms we arrive at the torque equation

The particle, in addition to the electric dipole d = e k will therefore
behave as though it has also associated a magnetic moment µ which is
expressed in terms of the internal zitterbewegung as in (2.104) by

We thus see that under smooth external fields the spinning particle
behaves like a point charge e placed at the center of mass q, with the
addition of a magnetic moment µ related to the zitterbewegung part of
the spin, and also an electric dipole d lying on the zitterbewegung plane,
which is oscillating with the zitterbewegung frequency ω.

We can make an alternative analysis of the structure of this particle.
If we replace variable r by q + k and make a Taylor expansion of the
potentials around point q, provided |k | is considered small, then,
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The interaction Lagrangian (2.100) can be written as

(2.146)

(2.147)

We then have the expression

The first term on the right-hand side is (2.147) and therefore can be
expressed as a function of this total -derivative, which can be withdrawn
from the Lagrangian, and the remaining two additional terms. The first
one with term (2.146) gives rise to (d · E ) Then

(2.148)

(2.149)

The two terms in expression (2.148) are written as e (k × ) · B, where
B = ∇ × A. In the case of smooth fields, if we consider for the vector
potential its expression in terms of a uniform magnetic field A = B ×r/2,
the last term (2.149) is

Finally we get for the interaction Lagrangian the expression

It clearly can be interpreted in this approximation as a nonrelativistic
model of a point particle with charge e at point q , moving with velocity

and an electric and magnetic dipole d and µ respectively, located at
the center of mass like some ‘intrinsic’ properties. Because the motion
of an electric dipole with velocity  produces a magnetic dipole d × , it
supplies an additional term in the Lagrangian. The motion of a magnetic
dipole produces an electric dipole × µ/c ² which is negligible in this
nonrelativistic approach.
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8 .  T W O - P A R T I C L E  S Y S T E M S
Let us consider a nonrelativistic system such that its kinematical space

X can be written as the Cartesian product X = X1  × X
2
 in terms of

two manifolds X a , a = 1, 2, such that both are homogeneous spaces
of the Galilei group G and therefore can be taken as the kinematical
spaces of two elementary particles. Let xa ∈ X a be the corresponding
kinematical variables for each elementary particle and x ≡ (x1 , x 2 ) ∈ X .
Can we say that X represents the kinematical space of a two-particle
system? In general an elementary particle is not only characterized by
its kinematical space X but also by the corresponding gauge function
α (g ; x ) defined on G × X.

Let us go further and assume that the gauge function for our system
α (g ; x 1, x 2) can be written in terms of gauge functions for elementary
particles in the form

(2.150)

in terms of the single particle gauge functions α  , a = 1, 2, each onea

defined on the corresponding G × Xa manifold. In this case we shall say
that X represents the kinematical space of a decomposable two-particle
system, with a gauge function defined by (2.150).

For instance let us consider two Galilei point particles of masses ma

with kinematical variables ta  and  ra , and gauge functions

From (1.62) we see that our total gauge function satisfies

in terms of an exponent ξ m of the Galilei group that depends on the
parameter m = m1 + m2

, interpreted as the total mass of the compound
system.

The homogeneity condition on the derivatives of the kinematical vari-
ables leads us to write the general Lagrangian in the form

(2.151)

where T a  = ∂ L / a and Ra = ∂ L / ∂ a , a = 1, 2, respectively. All these
functions depend on the eight kinematical variables and their first order
derivatives with respect to some dimensionless evolution parameter
being homogeneous functions of zero degree of the derivatives. We have
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two time observables t1 and t 2 , one for each particle. In a synchronous
description, as we shall see later, we shall establish the constraint t1 =
t 2 = t to obtain a synchronous single time evolution of the system.

According to the transformation equations of the kinematical vari-
ables and their derivatives under the Galilei group G we get for the
different functions that appear in (2.151) the transformation equations:

(2.152)

(2.153)

Invariance of dynamical equations under the Galilei group lead to
the following constants of the motion, by means of Noether’s theorem,
named as usual, total energy, total linear momentum, total kinematical
momentum and total angular momentum, respectively:

(2.154)

(2.155)

(2.156)

(2.157)

Total energy and linear momentum transform as:

(2.158)

(2.159)

in terms of the total mass m of the system and therefore the magnitude
H – P 2 /2m = H 0 or internal energy of the system, is an invariant and
a constant of the motion. The different observables are invariant under
translations. Therefore they depend on the variables θ = t2 – t l a n d
r = r 2 – r 1 , are homogeneous functions of zero degree in terms of the
derivatives and thus are functions of and
These variables transform under G in the form

(2.160)

8.1 SYNCHRONOUS DESCRIPTION
If there exists an observer who is able to produce a synchronous de-

scription, i.e., for all the time variables then all
other observables also produce a synchronous description. In this case
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θ = 0 and λ = 1. If we take the time derivative of the kinematical
momentum (2.156) we get for the total linear momentum

(2.161)

Under an infinitesimal pure Galilei transformation we get, for the func-
tions R a , the differential conditions

whose generaI solution is of the form

(2.162)

in which no addition on repeated index a is performed, and where the
Aa are arbitrary functions of r and u = u 2   – u 1 . Taking into account
(2.161) we get

(2.163)

Since in this spinless system we can interpret each function ma ua as
the mechanical linear momentum of particle a, then the time derivative
(with opposite sign) of the function Aa is the force acting on particle
a. From (2.163) we see that these systems in a synchronous description
satisfy Newton’s third law (action-reaction principle). In fact, the two
indexes 1 and 2 being arbitrary, the functions Aa satisfy the symmetry
properties

(2.164)

Due to the vector character of A a( r, u) under rotations it takes the
general form

(2.165)

where ƒ and g are two arbitrary functions of its arguments and the
symmetry conditions (2.164) eliminate a possible r × u term in (2.165).

In this synchronous description the center of mass position of the
system can be defined, at any instant , as

and this leads for the total linear momentum to P = m dq / dt.
From now on we can consider this system in a synchronous description

as a system of six degrees of freedom, with kinematical variables t, r and
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q, that transform under G as:

with a gauge function

It must be remarked here that the seven kinematical variables do not
belong to a homogeneous space of G, because in general the relative
separation at two different instants and the way r ( )
transforms does not define a group element that maps one into the other.
It therefore represents a non-elementary system of total mass m, where
the relative position r describes the internal motion.

In terms of r and q we have and
so that the general Lagrangian in terms of these kinematical variables
takes the form

Here , and observable
The energy H is translation invariant, and it is only a function of r, u =

and . P is mdq/ dt and A1 is the arbitrary function obtained
in (2.162) whose general form is given in (2.165). Since the energy
transforms under G as in equation (2.158), then under an infinitesimal
pure Galilei transformation it follows that

The general solution of this equation is of the form

with V, an arbitrary function of its arguments, interpreted as the internal
energy of the system. The final expression of the Lagrangian is

where is the reduced mass of the system. The arbitrary
functions V and A transform under G as
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Nevertheless V and A are not independent functions, since the observ-
able . When making this partial derivative of the
Lagrangian we get

and in consequence

If the vector potential A does not depend on u, then V reduces to the
general form V so that the final expression of the
Lagrangian L I becomes

(2.166)

In a time evolution description this corresponds to the interaction of a
point particle of mass µ, located at point r, under the action of an exter-
nal field with scalar and vector potentials φ(r ) and A (r ), respectively.

Dynamical equations obtained from (2.166), with A of the form A =
ƒ(r)r, as deduced from its general expression (2.165), are

since curl A = 0.
The function A (r ) is interpreted as the linear momentum transfer

between the two particles but it plays no role in the dynamical equations.
In the general case, for arbitrary V and A, we obtain the dynamical
equations

where on the right-hand side we still have a Lorentz-like force but on the
lef-hand side we have a term that can be interpreted as a mass transfer
between particles. For instance, if A (r,  u) =  ƒ(r)r + g (r)u then the
above dynamical equations become

where the g (r ) part can be interpreted as the mass transfer during the
linear momentum transfer.
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As a remark, in this case the radial part ƒ( r) r of A (r, u) does not play
any role in the dynamics because it contributes to the total Lagrangian
through a term of the form ƒ(r)r ⋅ u such that if we write ƒ (r) r = ∇ h(r),
then ƒ (r)r u = dh (r) / dt, and since it is a total time derivative it can
be withdrawn.

For point particles there are no spin effects and if the interaction is of
electromagnetic nature, A does not depend on u and the interaction is
characterized only by the static potential energy φ( r ).

9. TWO INTERACTING SPINNING
PARTICLES

A possible two-particle spinning system with a gauge function of the
form (2.150) is given by the following Lagrangian

(2.167)

in a synchronous description and in terms of a static potential energy.
For each L a , a = 1,  2, we can take for instance the corresponding free
Lagrangian for a free spinning particle of mass ma and zitterbewegung
frequency ωa as described in Sec. 4.. The interaction term depends only
on the relative distance |r 1 — r 2 | between the charges ea of the particles
and therefore it is a Galilei invariant term.

We must be cautious about the choice of a static Coulomb-like inter-
action between particles, because in the spinning particle model which
we have described in Sec. 4., the spin is related to the zitterbewegung
so that the charges whose motion produces the spin are neither static
nor in uniform motion. Therefore the corresponding Maxwell field asso-
ciated to each one is no longer static and even far from a Coulomb-like
behaviour. It is clear at this point that a thorough analysis of the elec-
tromagnetic structure of a spinning particle must be carried out before
producing any analysis of possible electromagnetic interactions between
them. We shall come back to the electromagnetic structure of the elec-
tron in Chapter 6. There, some hints about the static and Coulomb-like
behaviour of the average Maxwell field associated to a point charge in
motion, which describes circles at the speed of light, will be given. If
we take this suggestion for granted, the interaction potential φ (r) of this
example will be interpreted as the interaction of each particle in the av-
erage electrostatic field of the other. In this case, we have to consider
also the magnetic interaction of each charge with the magnetic field pro-
duced by the static magnetic moments associated to the other particle.
Nevertheless we shall avoid this analysis for the moment.

⋅ 
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Since the interaction does not depend on the accelerations, the defini-
tion of the center of mass observable for each particle remains the usual
one and the dynamical equations we obtain for system (2.167), are:

(2.168)

(2.169)

To simplify the problem let us assume that the particles are identical
and they are electrons. Then, by defining a dimensionless time θ = ω t ,
as in Sec. 4.3 and by using the zitterbewegung radius R = /2 m  e c  as
unit of length, the only parameter that controls the dynamical equations
is

Here α is the fine structure constant, and the dynamical equations
(2.168-2.169) become

If we define the variables: q = (q1 + q2 )/ 2, and r = (r + r2 ) / 2 , a s
center of mass and center of charge position, respectively, and the relative
separation between the centers of mass and charge of each particle k =
q1 – q 12, l = r  – r 2 , these variables satisfy:

The center of mass and center of charge of the system become uncoupled
with the other relative variables, so that the center of mass has a straight
free motion while the center of charge of the system makes an isotropic
harmonic motion of unit frequency around it.

Now about the other variables k and l, their motion is the same as
that of a single particle with a center of mass at k under the action
of a Coulomb-like central force from the origin of coordinates, which is
located at point l. When the problem is solved in the center of mass
frame, q1 = – q2 , and thus k = 2 q1, the evolution of particle 1 in this
reference frame is equivalent, up to a global factor 2, to the evolution of
variable k.

1



NONRELATIVISTIC ELEMENTARY PARTICLES 105

Figure 2.8. Representation in the C.M. frame of the motion of the center of mass of
two opposite charged particles with antiparallel spins. For particle 2, the motion of
its center of charge is also represented. The interaction produces a chaotic scattering.

In Figure 2.8, we represent the motion of an electron-positron sys-
tem interacting according to the Lagrangian (2.167). Both particles are
polarized orthogonal to the evolution plane in opposite directions and
the motion is depicted in the center of mass frame. Initial positions for
their center of masses are represented by points 1 and 2 on the x-axis,
respectively, and they are sent into each other with a non-vanishing im-
pact parameter. Particles approach each other and finally separate in a
chaotic scattering process. The direction of the dispersion depends in a
non-linear way on the relative initial phases of the internal motion.

For a different initial configuration we can obtain a bounded system,
like the one depicted in Figure 2.9 in which we also represent the center
of charge motion of particle 2.
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an electron-positron pair, producing a bound state.
Figure 2.9. Representation in the C.M. frame of the motion of the center of mass of
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Chapter 3

RELATIVISTIC
ELEMENTARY PARTICLES

In this chapter, by analyzing different homogeneous spaces of the
Poincaré group P, we study some models of elementary relativistic par-
ticles that our formalism predicts. We shall consider first a particular
Poincaré group parametrization that will be useful for the description
of the different homogeneous spaces to define the particles. As a first
example the relativistic point particle is analyzed. Later different kinds
of particles arise and are clasified by the velocity of the charge either
below, equal to or above the speed of light c. Except for the photon, the
center of mass of the particles is moving with velocity below c, so that
the possible tachyonic motion is related only to the motion of the point
charge. The class of particles whose charge is moving at the speed of
light is particularly important, giving rise to the Lagrangian description
of the electron, although the electron structure will be unveiled after
quantization of this model. These particles and tachyons have no non-
relativistic analog so that the Poincaré group produces a larger catalogue
of spinning objects.

The spin description we obtain here and the dipole structure of the
elementary particles are equivalent to the nonrelativistic case, in terms
of the zitterbewegung and rotation of the particle, although the explicit
relativistic expressions in terms of kinematical variables are more com-
plicated.

Instead of using a covariant notation for the different observables as
tensor magnitudes on Minkowski’s space-time, we prefer to use three-
vector notation, as in the nonrelativistic case, to show the similarities
between both approaches. Nevertheless, usually, at the end of each sec-
tion, we produce the corresponding description in terms of covariant
quantities.

109
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1. POINCARÉ GROUP
The Poincaré group is the group of transformations of Minkowski’s

space-time that leave invariant the separation between any two close
space-time events . We shall consider the contravariant
components x µ ≡ (ct, r), and x' = gx is expressed as
in terms of a constant matrix Λ and a constant translation four-vector
aµ ≡  ( cb, a ). We take for the covariant components of Minkowski’s
metric tensor η µv ≡ diag(1, –1, –1, –1). Then and

implies for the matrix Λ

(3.1)

Relations (3.1) represent ten conditions among the 16 components of
the matrix Λ, so that each matrix depends on six essential parameters,
which can be chosen in many ways. Throughout this book we shall
take three of them as the components of the relative velocity v between
inertial observers and the remaining three as the orientation  α  of their
Cartesian frames, expressed in a suitable parametrization of the rotation

group.
Therefore, every element of the Poincaré group P will be represented,

as in the previous case of the Galilei group, by the ten parameters g ≡
(b, a, v, α) and the group action on a space-time point x ≡ (t, r ) will be
interpreted in the same way, i.e., x' = gx :

(3.2)

as the action of a rotation followed by a boost or pure Lorentz transfor-
mation and finally a space and time translation. It is explicitly given on
the space-time variables by

(3.3)

(3.4)

Parameter β in (3.2) is the normal parameter for the pure Lorentz trans-
formations, that in terms of the relative velocity among observers v is
expressed as β / β tanh β = v /c as we shall see below. The dimensions
and domains of the parameters b, a and µ are the same as those of
the Galilei group, and the parameter v ∈  ,with the upper bound
v < c, has also dimensions of velocity. The physical meaning of these
ten parameters, that relate any two inertial observers, is the same as
in the Galilei case. The parameter v  is the velocity of observer O ,
as measured by O', and R(µ) represents the orientation of Cartesian
frame O relative to O', once O' is boosted with velocity v. The factor
γ (v ) = (1 – v 2 / c2 ) –1/2.
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The composition law of the group is obtained from x'' = Λ'x' + a' =
Λ' (Λ x + a ) + a' that by identification with x'' = Λ''x + a'' reduces to
Λ " = Λ' Λ and a'' = Λ'a + a', i.e., the composition law of the Lorentz
transformations, that we will find in the next Section 1.1, and a Poincaré
transformation (Λ' ,a' ) of the four-vector aµ . In this parametrization
g'' = g'g, is: 1

(3.5)

(3.6)

(3 .7)

(3.8)

where F(v', µ', v, µ) and G (v', µ',  v, µ )  are the real analytic functions:

(3.9)

(3.10)

The unit element of the group is (0,0,0,0) and the inverse of any
arbitrary element (b, a, v, µ) is

The group generators in the realization (3.3, 3.4), and in terms of the
normal parameters (b, a, β, α ), are

Thus, K and J are dimensionless and the commutation relations become

(3.11)
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(3.12)

If, as usual, we call x 0 = ct, P 0 = H / c, and K i = J 0i =  –Ji 0 and
µ = 0, 1, 2, 3 and then,

In covariant notation the commutation relations appear:

The Poincaré group has two functionally independent Casimir invari-
ants. One is interpreted as the squared mass of the system,

(3.13)

and the other is the square of the Pauli-Lubanski four-vector W µ . The
Pauli-Lubanski four-vector is defined as

(3.14)

which is by construction orthogonal to P µ , i.e., W µ Pµ  = 0.
It is related to the spin of the system S, defined through the relation

(3.15)

so that its time component W 0  = P · S = P · J is the helicity of the
particle, and the spatial part is the vector (3.15).

The other Casimir operator is thus

(3.16)

where it depends on S
2, the absolute value squared of the spin. We see

in the relativistic case that the two parameters m and S characterize the
two Casimir invariants and therefore they are the intrinsic properties of
the elementary particle the formalism provides. In the quantum case,
since the representation must be irreducible S 2 = s( s + 1) , for any
s = 0,1/2,1, … , depending on the value of the quantized spin of the
particle, but in the classical case S 2 can take any continuous value.

These W µ operators satisfy the commutation relations:

(3.17)

where we take  ∈ 0123  = +1, and

(3.18)

The Poincaré group has no non-trivial exponents, so that gauge functions
when restricted to homogeneous spaces of P vanish.
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1.1 LORENTZ GROUP
The Lorentz group L is the subgroup of transformations of the form

(0, 0,  v, µ), and every Lorentz transformation Λ( v, µ ) will be interpreted
as  Λ( v, µ ) = L (v) R( µ ), as mentioned before where L (v ) is a boost or
pure Lorentz transformation and R ( µ) a spatial rotation. Expressions
(3.7, 3.8) come from Expression (3.7) is
the relativistic composition of velocities since

but the conjugate of the boost is another

boost and thus

The product where v'' is the relativistic
composition of the velocities v' and R ( µ' ) v, and R (w ) is the Thomas-
Wigner rotation associated to the boosts L(v') and L( R ( µ' )v).

Therefore, expression (3.7) is equivalent to

(3.19)

(3.20)

and (3.8) is

The Thomas-Wigner rotation matrix R(w) is:

and the factor

Matrix R(w) is written in terms of the vector parameter w, which is a
function of v ', µ' and v, given by

(3.21)
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and the parameter φ, such that R (φ) = R (w)R(µ') is

(3.22)

If any one of the two velocities v or v' vanishes, R (w )i j = δ i j.
The composition law is obtained by the homomorphism between the

Lorentz group L and the group S L (2, ) of 2 × 2 complex matrices
of determinant +1. The Lie algebra of this group has as generators
J = – iσ/2 and K = σ /2, where σi are Pauli spin matrices. A rotation
of angle α around a rotation axis given by the unit vector n is given by
the 2 × 2 unitary matrix exp(α · J ), as in Sec.1. of Chapter 2,

(3.23)

In terms of the vector µ = tan(α /2)n,

(3.24)

where σ0 is the 2 × 2 unit matrix. A pure Lorentz transformation of
normal parameters βi is represented by the hermitian matrix exp(β · K ).
This matrix is:

(3.25)

In terms of the relative velocity parameters, taking into account the
functions cosh β = γ(v ), sinh β = γv/c and the trigonometric relations

and tanh(β/2) = sinh β /(1 + cosh β ), the
matrix can be written as

(3.26)

Then, every element of SL (2, ) is parametrized by the six real num-
bers ( v, µ ), and interpreted as

A (v, µ )  =  L (v)R(µ). (3.27)

We thus see that every 2 × 2 matrix A ∈ S L(2, ) can be written in
terms of a complex four-vector aµ and the four Pauli matrices σµ . As
A = a µ σµ , and detA = 1 leads to a µ a µ = 1 or (a0 )² – a ² = 1. The
general form of (3.27) is

(3.28)
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here the dimensionless vector u = γ(v)v/c.
Conversely, since Tr (σµσv ) = 2δµv, we obtain a µ = (1/2)Tr (Aσµ ). If

we express (3.28) in the form A( v ,  µ) = aµσµ we can determine µ and
v, and thus u, from the components of the complex four-vector a µ as:

(3.29)

(3.30)

where Re (aµ ) and Im (a µ) are the real and imaginary parts of the corre-
sponding components of the four-vector aµ . When Re (a0 ) = 0 expres-
sion (3.29) is defined and represents a rotation of value π along the axis
in the direction of vector Im (a ) .

If we represent every Lorentz transformation in terms of a rotation
and a boost, i.e., in the reverse order, Λ ( v, µ), = R (µ) L(v),  then the
general expression of A is the same as (3.28) with a change of sign in the
cross product term u × µ. Therefore, the decomposition is also unique,
the rotation R(µ) is the same as before but the Lorentz boost is given
in terms of the variables aµ by

Note the difference in the third term which is reversed when compared
with (3.30).

In the four-dimensional representation of the Lorentz group on Minkowski
space-time, a boost is expressed as L( β) = exp( β · K ) in terms of the
dimensionless normal parameters βi and the 4 × 4 boost generators K i

given by

If we call B = , we have



116 KINEMATICAL THEORY OF SPINNING PARTICLES

with , and so on for the remaining
powers of B, so that the final expression for L( β ) = exp( β · K ) is

where S = sinh β and C = cosh β. What is the physical interpretation
of β i ? Let us assume that observers O and O' relate their space-time
measurements x and x' b y . Observer O sends at time
t and at a later time t + dt two light signals from a source placed at
the origin of its Cartesian frame. These two signals when measured by
O' take place at points r' and r' + d r' and at instants t' and t' + dt',
respectively. Then they are related by

because dxi = 0. The quotient dx' i/dt' is just the velocity of the light
source v i , i.e., of the origin of the O frame as measured by observer O',
and then this velocity , such that the re-
lation between the normal parameters and the relative velocity between
observers is

and therefore tanh β = v/c. Function cosh β ≡ γ(v ) = (1 – v ²/c²)– 1 / 2

and when the transformation is expressed in terms of the relative velocity
it takes the form of the symmetric matrix:

(3.31)

The inverse transformation L –1 (v ) = L ( – v ). The orthogonal 4 × 4
rotation matrix takes the block form

(3.32)
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where (µ) is the 3 × 3 orthogonal matrix (2.7). When a Lorentz trans-
formation is expressed in the form Λ ( v , µ ) = L (v )R(µ)  then by con-
struction the first column of Λ( v, µ ) is just the first column of (3.31)
where the velocity parameters v are defined. Therefore, given the gen-
eral Lorentz transformation Λ( v, µ ), from its first column we determine
the parameters v and thus the complete L ( v) can be worked out. The
rotation involved can be easily calculated as L (–v)Λ(v , µ ) = R (µ)
If expressed in the reverse order Λ (v, µ )  =  R (µ)L(v), then it is the
first row of Λ that coincides with the first row of (3.31). It turns out
that, given any general Lorentz transformation Λ(v, µ ), then Λ (v, µ ) =
L (v)R (µ)  =  R (µ)L(v' ) with the same rotation in both sides as derived
in (3.29) and L (v )  =  R (–µ)L(v)R(µ)  =  L (R(–µ)v), i.e, the velocity
v  = R (–µ)v. In any case, the decomposition of a general Lorentz trans-
formation as a product of a rotation and a boost is a unique one, in terms
of the same rotation R( µ ) and a boost to be determined, depending on
the order in which we take these two operations.

Matrix Λ can be considered as a tetrad (i.e., a set of four orthonormal
four-vectors, one time-like and the other three space-like) attached by
observer O' to the origin of observer O. In fact, if the matrix is con-
sidered in the form  Λ (v, µ ) = L (v)R(µ) , then the first column of Λ is
the four-velocity of the origin of the O Cartesian frame and the other
three columns are just the three unit vectors of the O reference frame,
rotated with rotation R (µ) and afterwards boosted with L (v ). We shall
consider this tetrad structure when analyzing a general relativistic spin-
ning particle.

As an application of the composition law, let us consider the well-known
Thomas effect ² of the spin precession of an accelerated electron. Let OL b e
a laboratory inertial observer and O an instantaneous inertial observer at rest
with the electron at time t. Since the electron is moving in the laboratory with
velocity v L , the relationship between these observers is , where
the boost matrix L ( vL ) is as given in (3.31). If the acceleration of the electron
is a in the O frame, then let O' be another inertial observer at rest with the
electron at time t + dt which is moving with the velocity adt with respect
to O and such that its Cartesian frame is just that of O, boosted with this
velocity. Therefore their space-time measurements are related by
and thus . The composition of these two boosts is just

, where is the new velocity
of the electron in the laboratory frame and aL  the acceleration also in this
frame. is the infinitesimal Thomas-Wigner rotation associated to the
composition of the boosts. By application of equation (3.8), since the rotation
involved is infinitesimal, tan , we get

'
'

x  =  L (ad t )x'

R (dα L)
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where we have written
in the denominator is neglected as compared with 1. Now

and the infinitesimal function G
dt and

the relation between the accelerations in the O and O L frames, given later in
(3.58), is

We finally obtain that

which is the angular velocity of rotation of the instantaneous frame located at
rest with the particle, measured in the laboratory frame.

If the electron is under the action of external forces but no torques, O and
O'  , at rest with the particle, agree that the spin remains constant in time in
their frames and therefore for the laboratory observer the spin, in absence of
torques, is precessing with Thomas angular velocity ωT .

2. RELATIVISTIC POINT PARTICLE
As an example we shall analyze first the relativistic point particle, i.e.,

that system for which the kinematical space is the quotient structure
X = P / L , where P is the Poincaré group and the subgroup L is the
Lorentz group. Then every point x ∈ X is characterized by the variables

, with domains as the corresponding group
parameters, in such a way that under the action of a group element
g ≡ (b, a, v, µ) of P they transform as:

(3.33)

(3.34)

and are interpreted as the time and position of the system. If, as usual,
we assume that the evolution parameter is invariant under the group,
taking the -derivatives of (3.33) and (3.34) we get

(3.35)

(3.36)

The homogeneity condition of the Lagrangian, in terms of the deriva-
tives of the kinematical variables, reduces to three the number of degrees
of freedom of the system. This leads to the general expression

(3.37)
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where a n d    t and r and
homogeneous functions of zero degree of  and . Because the
Lagrangian is invariant under P , the functions T and R transform under
the group P in the form:

(3.38)

(3.39)

We thus see that T and R are invariant under translations and therefore
they must be functions independent of t and r.

The conjugate momenta of the independent degrees of freedom q  = r
i i

are  and consequently Noether’s theorem (1.55) leads to
the following constants of the motion, that are calculated similarly as
in the Galilei case except for the invariance under pure Lorentz trans-
formations. We have now no gauge function and the variations are

  and a n d t h u s w e

get:

(3.40)

(3.41)

(3.42)

(3.43)

The energy and the linear momentum transform as:

(3.44)

(3.45)

They transform like the contravariant components of a four-vector
P 

µ ≡  (H /c,P). The observables cK and J are the essential components
of the antisymmetric tensor
and
Tak ing  the derivative of the kinematical momentum, = 0, we get

where u is the velocity of the
particle and point r represents both the center of mass and center of
charge position of the particle.

The six condit ions P = 0 and K = 0, imply u = 0 and r = 0,
so that the system is at rest and placed at the origin of the reference
frame, similarly as in the nonrelativistic case. We again call this class
of observers the center of mass observer.

will be functions of 

Energy H =  – T ,

linear momentum P = R = p ,
kinematical momentum K = H r/ c 2  – P  t ,

angular momentum J = r × P .



120 KINEMATICAL THEORY OF SPINNING PARTICLES

From (3.44) and (3.45) we see that the magnitude (H/c)2 – P 2= m2 c 2

is a Poincaré invariant and a constant of the motion that defines the mass
of the particle. By using the expression of P = Hu/c 2 , we get

and the energy can be either positive or negative and u < c. If u > c,
then the invariant (H/c)2 –P2< 0 and it is not possible to define the
rest mass of the system. By substitution of the found expressions for T
and R in (3.37), the Lagrangian of the system is just

(3.46)

Expansion of this Lagrangian to lowest order in u/c, in the case of pos-
itive energy, we get

where the first term –mc 2   that can be withdrawn is just the equivalent
to the Galilei internal energy term – H0 of (2.38).

The spin of this system, defined similarly as in the nonrelativistic case,

(3.47)

vanishes, so that the relativistic point particle is also a spinless system.
The ten constants of the motion (3.40-3.43) are the generating func-

tions of the corresponding canonical transformations of the system, such
that on phase space in terms of the canonical conjugate variables they
take the form

(3.48)

and taking the Poisson bracket of these functions we get

These are the commutation relations (3.11) and (3.12) of the Poincaré
group, up to a global sign. Now our conserved quantity K has the
same dimensions as the corresponding Galilei kinematical momentum
and must be put in correspondence with the Poincaré generator K /c
because it has dimensions of angular momentum divided by velocity. In
the low velocity limit of the particle (c → ∞), these Poisson brackets
reduce to those of the extended Galilei group, given in (2.36) and (2.37),
because J /c2  → 0 and H /c2  → m.
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3. RELATIVISTIC SPINNING PARTICLES
There are three maximal homogeneous spaces of P, all of them at first

parameterized by the variables (t, r, u, ρ), where the velocity variable u
can be either u < c, u = c or u > c. We shall call these kinds of particles
by the following names: The first one, since the motion of the position
of the charge r satisfies u < c, we call a Bradyon, from the Greek term
βραδυς  ≡ slow. Bradyons are thus particles for which point r never
reaches the speed of light. The second class of particles (u = c ) will be
called Luxons because point r is always moving at the speed of light
for every observer, and finally those of the third group, because u > c,
are called Tachyons, from the Greek αχυς ≡ f a s t .

For the second class we use the Latin denomination Luxons in spite
of the Greek one of photons, because this class of particles will supply
the description not only of classical photons but also a classical model
of the electron. This class of models is very important and it has no
nonrelativistic limit. Therefore the models this manifold produce have
no nonrelativistic equivalent.

The first class corresponds to a kinematical space that is the Poincaré
group itself and will be analyzed in what follows. The analysis of the
other two will be left to subsequent sections.

3.1 B R A D Y O N S
A spinning Bradyon is defined as a dynamical system whose kinemat-

ical space X is the Poincaré group manifold. 3

Similarly as in the Galilei case, it is characterized by the ten real
kinematical variables with do-
mains t ∈  , r  ∈  , u ∈  but now u < c, and  ρ ∈  , like the
corresponding group parameters, in such a way that under the action of
a group element g ≡ (b,a,v,µ) of  P they transform as x' = gx:

(3.49)

(3.50)

(3.51)

(3.52)

Functions F and G are given in (3.9-3.10), and the parametrization of
rotations is the one given in (2.8).

The way these variables transform allow us to interpret them respec-
tively as the time, position, velocity and orientation of the particle. As
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generalized coordinates they are not independent; there exist among
them three constraints that together with the homo-
geneity condition of the Lagrangian will reduce to six the number of
essential degrees of freedom of the system.

The six independent variables are r (t) and ρ (t), such that the La-
grangian will be a function of r(t) up to its second derivative and up to
the first derivative of the orientation ρ(t).

Because the possible Lagrangians are explicit functions of the kine-
matical variables and their first derivatives, and must be Poincaré invari-
ant, we need to form invariant expressions in terms of these variables,
such that they become homogeneous functions of first degree in terms of
the derivatives. The best way to do that will be to find first some tensor
functions of these variables and afterwards to obtain scalar magnitudes
by saturation of the tensor indexes.

If we look at expressions (3.51) and (3.52), they come from the com-
position law of the Lorentz group that can
be considered, by looking at the different columns of matrix Λ (u,ρ) ,  a s

where the e(α ) are the α -th column of the corresponding Lorentz matrix
Λ (u, ρ). But this expression amounts for each α to

(3.53)

so that each column is transformed into the corresponding one by means
of a Lorentz transformation. But each column is in fact a normalized
four-vector, that, according to the metric we have chosen, and by (3.1),
satisfy

i.e., e(0 ) is time-like and the three e ( i )are space-like orthogonal four-
vectors, and where a · between two four-vectors represents their corre-
sponding scalar product in Minkowski space-time. Their contravariant
components are e ( α )  ≡ Λ( , ) α , when expressed in terms of a set of ba-
sis four-vectors ƒ(µ ) , µ = 0, 1, 2, 3 in the laboratory frame. These vectors
have the contravariant components ƒv

(µ)  = δv
µ , where we use a subindex

between brackets to denote some vector of a set, while subindexes or
superindexes without brackets refer to the corresponding covariant or
contravariant components. Thus

The four-vectors e(α) are invariant in form, because each e(α) is trans-
formed into the corresponding e'(α) , such that its contravariant compo-

nents e' µ(α)  have the same analytical expression in terms of u' and ρ' a s

µ µu ρ
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the components of eµ 
(α) in terms of u and ρ . The same thing happens

to the derivative with respect to the invariant evolution parameter of
both terms of expression (3.53)

(3.54)

but with the additional condition that the components of (α) are in-
variant in form and are linear functions of and 

We have now an alternative viewpoint to describe a general Bradyon.
It is described by the knowledge of the time t and the position r, thus by
a four-vector of contravariant components x µ  ≡ (ct, r ), and an associated
set of four orthonormal four-vectors e(α ) moving along the trajectory of
point r. The kinematics of this kind of particles is what is known as a
transport of tetrads or transport of frames.4

We write the Lorentz matrix Λ at any instant as the product
in this order, where L ( ) is a boost ma-

trix and R (ρ) an orthogonal rotation matrix, both expressed in terms of
the above mentioned parameters. Then, four-vector e (0) is just the di-
mensionless four-velocity with contravariant components (γ (u), γ(u)u /c)
and the other three four-vectors e ( i), i = 1, 2, 3 are the orthogonal space-
like unit vectors linked to point r, that correspond to the three column
vectors of the orthogonal matrix R(ρ(  )), and finally boosted with the
pure Lorentz transformation L(u).

u

Equations (3.49)-(3.52) can be written, in a covariant form, as

(3.55)

and taking the -derivative

(3.56)

We get for  and the transformation equations (3.35) and (3.36),
and very complicated expressions for and  . For instance, for

we get:

(3.57)
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and therefore the acceleration transforms as:

(3.58)

Since at any , if we take the derivative of
this expression we get

and the tensor-looking antisymmetric magnitudes Ψαβ  = − Ψβα , are six
invariant functions of the kinematical variables u and ρ and their East
derivatives. They are not tensors because under an arbitrary Poincare
transformation   they transform as    Ψ'α β  =  Ψα β , as it corresponds to the
invariance of the scalar product of two four-vectors ( α )  a n d  e(β)  fo r any
arbitrary inertial observer.

If we express the laboratory tetrad ƒ(µ ) in terms of the body tetrad

e(α ),

A change of inertial reference frame corresponds to a change of basic
tetrads ƒ (µ) → ƒ '(µ) given by

in terms of the components of the Lorentz matrix Λ( v , µ ). But if Λ µ
v is

the set of coefficients for transforming the contravariant components of
a tensor, Λ µ

v are the coefficients for the transformation of the covariant
components, because

From the viewpoint of the particle frame the components of the labo-
ratory frame ƒ

α
(µ) are no longer constant magnitudes, but they depend on

. Therefore, taking the -derivative of
we get
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but the -dependent magnitudes Ω transform like the components of
an antisymmetric rank 2, covariant tensor. Explicitly,

µ v

Then the different magnitudes we find may have indexes of the type
µ with respect to the laboratory frame and indexes of the type α in the
body frame. It is only with respect to the laboratory frame that they
transform like tensor magnitudes. This is why Ψ which is a magnitudeα β
referred to the particle frame is in fact an invariant magnitude.

It is not difficult to see that

reach the same result with an alternative method using matri-
is any Lorentz matrix, it satisfies at any instant ,

where η = diag( 1, –1, –1, –1) is Minkowski’s metric tensor

We can
ces. If

.
written in matrix form, and T means the transpose matrix. Then, taking the

-derivative, we get

Similarly, Λ( ) also satisfies and thus

Since then  and therefore

and

This implies, using matrix indices, that

but this is just  by considering that the first index of
each object, irrespective of up or down, represents a row index and the second
a column index. Then this is the transformation of the contravariant compo-
nents of a tensor. The other Ψ 'αβ  = Ψαβ are invariant magnitudes.

If we write in matrix form the magnitudes Ψ , with α and
µ as row indexes and β and v column indexes respectively, then

αβ and Ω µ v

(3.59)
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(3.60)

The invariant vector π and pseudovector λ and non-invariant vector α
and pseudovector ω are computed through rather tedious calculations
and they are expressed as

(3.61)

(3.62)

The variables ω0 and ωT are given by:

(3.63)

(3.64)

(3.65)

(3.66)

In (3.65) if would be the time, ω0 would be the angular velocity
expressed in terms of the orientation variables and their derivatives as in
the nonrelativistic case (2.50)) and ωT is the Thomas angular velocity. In
the case u = 0, the time-space part of Ωµ v , α, reduces to /c, while the
space-space part ω is the angular velocity ω0 . We shall use throughout
this chapter the notation ω0 for the angular velocity in a -evolution
description, not to be confused with variable ω defined in (3.64) which
depends on ω0 and also on 

The invariant functions π and λ are explicitly dependent on the ori-
entation variables ρ by the term R (–ρ), while the magnitudes α and ω
are only dependent on ρ through its dependence on ω0 . It is doubtfull
whether any Lagrangian should be explicitly dependent on the orien-
tation variables ρ and therefore we expect to construct the possible
invariant terms from the variables α and ω.

The expression of and ω0 in terms of α and ω is the inverse of
(3.63) and (3.64),

(3.67)
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(3.68)

Since Ω µ v  transforms under P like a covariant tensor, variables α and
ω in (3.63) and (3.64) respectively, transform as:

(3.69)

(3.70)
i.e., as it corresponds to the components of a completely antisymmetric
tensor.

In covariant notation

(3.71)

with the antisymmetric tensor ∈ 0123 = +1, and in terms of the follow-
ing three dimensionless four-vectors

and ωµ , which is the boosted four-vector of
components (0, ). Here is the angular velocity of the particle mea-
sured by the inertial observer at rest with the particle, i.e., that measures
u = 0.

These three four-vectors satisfy:

where and are the acceleration and angular velocity in terms of
the dimensionless evolution parameter , when measured by the instan-
taneous rest frame observer (u = 0), and where ω0 is given in (3.65).

The homogeneity condition of the Lagrangian, in terms of the vari-
ables , allows us to write it as:

(3.72)

and, in terms of the new defined variables ( α  ,  ω  ),

(3.73)
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or, in terms of the variables

(3.74)

Here the different functions are defined by
 and

They will be functions of the kinematical variables and homo-
geneous functions of zero degree of the derivatives. It must be remarked
that the relationship between the different sets of variables involving
derivatives of the kinematical variables , ( α, ω ) and ( , ω0 ) is a
linear one. It turns out that the same thing happens to the relation be-
tween the corresponding sets of functions (U, V), (D, Z) and (U, W) .
We see that, irrespective of the particular Lagrangian model we choose,
while keeping fixed the same kinematical variables, it is in terms of these
partial derivatives of the Lagrangian that we can construct Noether’s
constants of the motion.

For instance, by using expressions (3.63), (3.64), (3.67) and (3.68) we
obtain the relationship between functions D, Z and functions U and
W. It can be shown that

(3.75)

as in the Galilei case, and

(3.76)

Conversely,

(3.77)

(3.78)

Since the Poincaré group has no exponents, the Lagrangian L is in-
variant under P, thus, for instance, the different functions of Lagrangian
(3.73) transform in the following way:

(3.79)

(3.80)
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(3.81)

(3.82)

Observables –T and R transform like the contravariant components
of a four-vector, and D and Z transform like the strict components of
an antisymmetric tensor We see
that they are translation invariant and therefore they will be in general
functions of , although we expect no explicit dependence
on ρ variables.

In covariant notation the magnitudes and the in-
variant part of the Lagrangian involving α and ω, can also be written
as

The generalized canonical momenta are, as in the Galilei case:

(3.83)

(3.84)

(3.85)

and thus, under time translations, the term of (1.52) reduces
to

We thus obtain the same expressions for H and P, in terms of T, R and
U, as in the nonrelativistic case.

Under a pure Lorentz transformation

i.e.,
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Here we set . The part

with the term

together with the relations

finally reduces to the function D /c while the remaining terms cancel
out.

Similarly, although α and ω transform under rotations in the form
α ' = R(µ)α and ω' = R (µ ) ω , only the terms r × P and Z survive in
the final expression of the angular momentum.

Collecting all results of applying Noether’s theorem to the whole
Poincaré group, we find the following constants of the motion:

Energy H = – T  – (dU /dt ) · u, (3.86)

linear momentum P = R – d U / dt , (3.87)

kinematical momentum K = H r /c – P t – D /c, (3.88)

angular momentum J = r × P + Z , (3.89)

2

where Z = u × U + W, as given in (3.75), plays the role in the relativistic
case of the observable Z in the Galilei one (2.67).

The only difference with the Galilei case is the expression of the kine-
matical momentum. In spite of the term Hr/c there, we have mr a n d
instead of D /c we found the term U. In fact, the function D/c, give n
in (3.76), reduces to U in the nonrelativistic limit when u/c → 0 and
both terms transform into the Galilei ones.

This difference arises because the relativistic Lagrangian depends on
the same variables as the nonrelativistic one. All these variables trans-
form analogously under translations and rotations, respectively, and

2
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therefore H, P and J will have the same expression in terms of the par-
tial derivatives / , of the Lagrangian. The only difference comes
from the different way the kinematical variables transform under boosts
in the Galilei and Poincaré approach and the non-vanishing gauge func-
tion associated to the pure Galilei transformations. This is important be-
cause the spin operator will arise from the general expression of J– q × P.
But this general expression is the same in both formalisms with the only
exception of the definition of the center of mass position in terms of the
other functions. Therefore, when quantizing these systems, we will show
that the spin operator in the center of mass frame takes exactly the same
form in the relativistic and nonrelativistic case.

Total energy and linear momentum transform like the components of
a four-vector P µ ≡ (H/c, P ), and the six magnitudes K and J can be
written in a covariant way as the essential components ofqthe antisym-
metric tensor

(3.90)

It has two parts, one Z µ v that is translation invariant and another with
the form of a generalized orbital angular momentum x v , sim-µ P – x v Pµ
ilarly as in the point particle case. One is tempted to consider that the
part Z of the total angular momentum is to be considered as the spin of
the system, as is usually done in quantum mechanics. However we shall
delay the definition of spin until the definition of the center of mass of
the system, because this magnitude is not a constant of the motion for
a free particle, but satisfies the dynamical equation dZ/dt = P × u .

If we consider material systems for which H > 0, we can define the
magnitude k with dimensions of length k = cD/H, in such a way that
taking the -derivative of both sides of the kinematical momentum (3.88)
we get . Therefore, the linear momentum
takes the form , thus, defining the position of the
center of mass of the system q = r – k , that moves at constant velocity,
and the observable k = r – q is the relative position of the system with
respect to the center of mass.

We see again the similarity with the nonrelativistic case, because D/c
is playing the role of U in the nonrelativistic approach, and the relative
position vector k = (c / H ) D /c is the equivalent to k = U/m whenever
we can replace the energy H by m c .However, there are some differ-2

ences. In the nonrelativistic case it is only the function U, and therefore
the dependence of the Lagrangian on , that produces the zitterbewe-
gung. In the relativistic case, as we see from (3.76), both functions
U and W contribute to D and therefore to the existence of the non-
vanishing vector k , which measures the separation between the center
of mass from the center of charge. Both the functions U and W, which

2
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contribute to the spin structure, are related to the zitterbewegung. This
is because the Lorentz boosts do not form a subgroup of the Lorentz
group, and velocity and orientation variables become intertwined.

In terms of the center of mass position, the kinematical momentum
(3.88) can be written as:

(3.91)

The center of mass observer is defined, as in the nonrelativistic case,
by the conditions P = K = 0. It defines the class of observers, up to an
arbitrary rotation and time translation, for which the center of mass is at
rest and placed at the origin of the reference system. The six conditions
P = K = 0, lead to d q /dt = 0, and q = 0 respectively, thus justifying
this definition. We see again that P is not pointing along the direction
of the velocity u. This is because the point r is not the center of mass of
the system. Using the same arguments as in the nonrelativistic case, for
instance a minimal coupling with the external potentials, independent
of the acceleration, , dynamical equations become

We reach the conclusion that r is in fact the point where the external
fields are defined, and therefore it represents the center of charge of the
particle.

The spin of the system is defined as

(3.92)

It is expressed in terms of the ten constants of the motion H , J , P
and K , and thus it is also another constant of the motion for the free
particle, similarly as in the Galilei case, where it takes the expression
(2.69).

From the constants of the motion (3.86 - 3.89) we can define new
constants:

(3.93)

(3.94)

that can be expressed in terms of the four-vector P µ and the antisym-
metric tensor Z µv in the form . The observables
(3.93, 3.94) are the components of the Pauli-Lubanski four-vector.
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It turns out that the four-vectors P µ and w µ are orthogonal to each
other, P µ w  — wµ w

µ = m 2c2 S2
µ = 0, and, P µ P µ  = m 2c2 and are two

functionally independent invariants, constants of the motion that define
two invariant properties of the system m and S, the mass and the ab-
solute value of the spin, respectively. These two properties are the only
invariant properties that characterize the elementary Poincaré particle.

Since the first part of the Lagrangian
, is itself Poincaré invariant, then the second part that reduces

to Z µ vΩ 
µv /2, will also be invariant. In terms of Ω µ v  we can form dif-

ferent invariants, namely the contractions and
in terms of the dual tensor . Then we have
two possibilities for Zµ v; it might be either proportional to Ω µv or to

. This amounts to the choice of functions D and Z, respec-
tively, either proportional to α and ω or vice versa, D proportional to
ω and Z to α, with the same proportionality coefficients, as we found
in the nonrelativistic approach in Section 6. of Chapter 2.

These invariants take the explicit form:

(3.95)

(3.96)

These expressions are homogeneous functions of second degree in
terms of the derivatives of the kinematical variables. If we divide these
terms by the homogeneous invariant function of first degree

we get first order invariants that can be used to construct
possible relativistic invariant Lagrangians.

These two possible selections lead to the following Lagrangians:

(3.97)

(3.98)

where α 2 –  ω2 and α ·ω are given in (3.95) and (3.96) respectively. The
coefficients S 2 /mc have been introduced by dimensional considerations
and when S = 0 we recover the point particle case. Other possibili-
ties could be the use of the first order terms of the form or
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, instead. Particular cases of these will be considered later. In the
absence of rotation ω ≡ 0, the invariant α · ω vanishes but the other0

α – ω  is different from zero. In this case the spin is only related to2 2

the zitterbewegung and a particular example will be analyzed in Section
3.2 of this Chapter.

Lagrangians of th e kind (3.97) can be found in the literature. In
fact, Constantelos 5 mentions a Lagrangian which is a particular case of
this one with ω0 = 0, and thus the particle has zitterbewegung but no
rotation. The Lagrangian depends on the velocity and acceleration but
not on the angular variables. In a different context, the work by Hanson
and Regge 6 assumes that = 0, and the invariant α 2 – ω 2 reduces to
- ω 20 . The particle has no internal motion but it is a spinning top that
rotates with a certain angular velocity, and the spin is pointing along
the direction of the angular velocity. This model, which is not devoid of
problems, will be analyzed later in Chapter 5.

However, to our knowledge, Lagrangians of the type (3.98) have not
been described earlier. Both kinds of Lagrangians (3.97, 3.98) lead to
nonlinear dynamical equations for the position of the charge.

Lagrangian (3.97) gives rise, for the center of mass observer, to the
following dynamical equations:

(3.99)

(3.100)

Here is the angular velocity and the spin S is a constant vector.
We see that u·r ~ u ·du/dt and u·S ~ u · Ω . Then, there exist solutions
of equations (3.99, 3.100) with constant values of the velocity  u and  Ω
and also with the condition Ω · u = 0. In this case, the zitterbewegung
is circular and takes place in a plane orthogonal to the angular velocity
and to the spin, as is shown in the picture. We see that for this model,
although the analytical expression of spin in terms of the angular velocity
is rather involved, nevertheless for the center of mass observer S and  Ω
lie parallel to each other. In general the zitterbewegung, contained in a
plane orthogonal to the spin in the center of mass frame, will be more
complicated than in the nonrelativistic case. We will show this in the
next section when analyzing a simpler model in which the spin depends
only on this internal motion and where some alternative trajectories for
the center of charge are depicted.

Similarly, Lagrangian (3.98) also describes motions with constant ab-
solute value of the angular velocity, being orthogonal u and  Ω . Dynam-
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Figure 3.1.  Motion of the center of charge of the system (3.97) around the C.M.

ical equations for the center of mass observer are:

(3.101)

(3.102)

This motion is described in Figure 3.2, where the spin S is a constant
vector which is not lying along the angular velocity.

In the exmples shown above, the total spin and the zitterbewegung
part, which is related to the orbital motion of the charge position around
the center of mass, are both orthogonal to the plane of this internal mo-
tion. This will have consequences for the definition of the gyromagnetic
ratio of the particle because the magnetic moment, according to the
classical definition, is related to the current and therefore is orthogonal
to the zitterbewegung plane. When expressed in terms of the total spin
their relationship will be different than the usual one for a point par-
ticle. Another general feature is that in the center of mass frame and
for low energy processes, the behaviour of this system is like that of a
point charge placed at the time-averaged position, i.e., at the center of
mass but with the addition of a constant magnetic moment µ produced
by the current and an oscillating electric dipole d = ek of time average
value zero, and thus negligible except in cases of a very close interaction
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Figure 3.2.  Motion of the center of charge of the system (3.98) around the C.M.

between particles or in high energy events where the time of flight will
be of the same order as the period of this internal motion.

Similarly, as in the Galilei case, if the dependence of the Lagrangian
on the orientation variables ρ is only through its dependence on the an-
gular velocity , then we also obtain . There-
fore, taking the –derivative of the total angular momentum, we reach
expression (2.74)

Nevertheless, in the relativistic case, R observable is not lying along
but by taking the –derivative of the kinematical momentum and using
(3.88) and (3.76) we arrive at:

(3.103)

which clearly has as a nonrelativistic limit the expression R = mu .
We obtain an alternative expression for the linear momentum

(3.104)

which shows that P and u are not parallel vectors in general.
Then, even in the case where the Lagrangian is independent of ω0 ,

there exists a relationship between the velocity and acceleration that
produces things like a precession of the orbits of the zitterbewegung, as
we shall analyze in the next Section 3.2, in contrast with the nonrela-
tivistic ones where orbits are, in general, closed ellipses.
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3.2 RELATIVISTIC PARTICLES WITH
(ANTI)ORBITAL SPIN

Let us analyze first a class of Bradyons for which the spin structure
is simpler than in the general case. In the Galilei approach we got
two simpler models by defining the corresponding kinematical spaces as
G/SO (3) and G /{ ,+}, where { ,+} is the subgroup of pure Galilei
transformations or boosts. These kinematical spaces gave rise respec-
tively to the free particle with spin related to the zitterbewegung (Section
4., Chapter 2) and the one with spin related only to the angular velocity
(Section 5., Chapter 2).

In the present formalism the kinematical space P /SO (3) can also
be defined but the equivalent to the other manifold G /{ , +} is no
longer possible because the Lorentz boosts do not form a subgroup of the
Poincaré group and it is not possible to define the corresponding homo-
geneous space. It turns out that in the relativistic case it is not possible
to isolate angular variables from acceleration variables and whenever our
system has directional properties, and thus orientation, it also necessar-
ily has zitterbewegung. Nevertheless let us analyze first a simple model
of spinning particle that the spin is independent of the angular velocity
and therefore no orientation variables are involved.

The kinematical space of this system is the seven-dimensional man-
ifold spanned by the variables ( t , r , u ), u < c, interpreted as time, po-
sition and velocity respectively which is the homogeneous space of P,
X = P / S O(3). since u < c they will have as a nonrelativistic limit the
examples shown in Sections 4. and 4.5 of Chapter 2.

If u is the velocity of the particle, we form in terms of u the dimen-
sionless four-velocity vector with u µu µ = 1. If
we assume that all kinematical variables are functions of the dimension-
less parameter , then, taking the derivative with respect to of this
four-vector we get another dimensionless four-vector

We see that

is a Poincaré invariant expression, homogeneous of second order in the
derivatives of u, and where 

Since is another first order invariant in terms of the deriva-
tives of the kinematical variables, we can form two first order Poincaré
invariant terms depending on the acceleration:

(3.105)
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and

(3.106)
Thus we can have the following Lagrangians:

(3.107)

(3.108)

in terms of two arbitrary constant parameters a and b.
The Lagrangian L 1 in the case of low velocity and in a time evolution

description, gives rise to:

(3.109)

that has as a nonrelativistic limit the Galilei Lagrangian (2.76) and thus
the parameters are identified with a = m and b = m /2ω2 , m being the
Galilei mass of the system, and ω the frequency parameter of the internal
zitterbewegung.

Total linear momentum and energy are expressed as usual as

The observable U is:

and its time derivative

and the observable , becomes
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In this example in which L does not depend on the angular velocity we
also have that

The kinematical momentum is

where the relative position vector k is defined by

(3.110)

(3.111)

We see that it has direction opposite to the acceleration, provided b > 0,
thus suggesting an internal central motion, as it happens by the corre-
sponding nonrelativistic limit.

The center of mass position is defined as

(3.112)

The linear momentum can be expressed in terms of the center of mass
position q with the usual relation

which in terms of the kinematical variables, substituting the expressions
of these observables from above, yields

(3.113)

It has components along u, d u/ dt and d 2 2u / dt  .
The angular momentum takes the form

and the spin becomes

For the center of mass observer P = 0, K = 0, k = r, u = d k /dt a n d
H = m c 2 . The spin in this frame reduces to

(3.114)
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which is also of (anti)orbital type, as in the nonrelativistic case. Since S
is constant in this frame, the motion takes place in a plane orthogonal
to the spin.

If expressed in polar coordinates r and φ, this equation leads to

(3.115)

i.e., a constant areolar velocity as in the usual central motions.
If in (3.111) we make the scalar product of both sides with vector

u = d k / dt in this frame and divide the result by c2 , we find:

and thus

We get another first integral of the form

(3.116)

which is another constant of the motion, positive, dimensionless, with
the meaning of a certain conservation of energy of the internal motion.
In fact, if we take b = m/2 ω 

2
, from (3.111), we get

(3.117)

which is a kind of generalized relativistic isotropic harmonic motion.
Due to the factor γ(u) – 3 , the velocity can never increase above the
value c because γ(u) rises as u does and it turns out that the acceler-
ation decreases with γ(u)– 3. By neglecting terms of order of u /c, it is
an isotropic harmonic oscillator, whose energy conservation equation is
precisely (3.116).

the dimensionless time variable θ = ωt and the constant length a = c /ω,
then the system of differential equations to be solved is in terms of
the dimensionless variables = x /a and = y /a, which once we have
removed the hats, satisfies the ordinary system:

If we take the XOY plane as the plane of the trajectory and define
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Figure 3.3. Possible zitterbewegung trajectories of spinning relativistic particles.

These equations can be solved in terms of elliptic integrals. The constant
(3.116) takes the form

where now the dot means θ– derivative. In these dimensionless units the
above constants of the motion (3.115) and (3.116) take the form

in polar coordinates, where the dot means d/ dθ. From this we get
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so that the motion of the charge is bounded in the radial coordinate
between the extremal points R+ and R – ,

such that dr / d φ = 0 in these points.
Different zitterbewegung trajectories are depicted in Figure 3.3. We

obtain a circular trajectory at constant velocity and radius a if the pa-
rameters are adjusted such that the velocity u /c = 0.6558656. In that
case the absolute value of acceleration is and solving
this equation for a = 1 it has only one real root, the mentioned value
for the reduced velocity.

If we make the analysis for an arbitrary observer, dynamical equations
reduce to

(3.118)

Here H is the constant value H = m c 2γ(v) in terms of the constant
velocity of the center of mass v = d q / dt. This is the relativistic general-
ization of the isotropic harmonic motion written in an arbitrary frame.

If there is an interaction with an electromagnetic field, we get again
for the relative position vector the same expression as in (3.111) because
there are no coupling terms between and the external electromagnetic
fields, and the dynamical equations are

(3.119)

(3.120)

Here, γ(v ) is the corresponding γ factor in terms of the center of mass
velocity and where the external fields E ( t, r ) and B (t, r) are defined at
the center of charge position r.

3.3 CANONICAL ANALYSIS
Let us consider the generalized Lagrangian (3.107) written in the form

where the dot means now time-derivative. We can obtain the conju-
gate momenta of the six generalized coordinates, respectively, the three
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degrees of freedom q1 = r and their first derivatives q2 = , as

The phase space is a 12-dimensional manifold and the Hamiltonian is in
fact the total energy written in terms of the canonical variables

Hamilton- Jacobi equations are

The ten Noether constants of the motion are the generating func-
tions of the corresponding canonical transformations of time and space
translations, pure Lorentz transformations and rotations, and are given
by

The Poisson bracket of the above constants of the motion satisfy the
commutation relations
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that are, up to a global sign, the commutation relations of the Poincaré
group (3.11-3.12).

Although Ki satisfies {K i , H} = P i , it is a constant of the motion
because as we see in (2.85), K is time dependent and its total time
derivative in the canonical approach is

The spin observable

satisfies the Poisson bracket commutation relations

showing respectively that transforms like a vector under rotations is
invariant under space translations and is a constant of the motion. Also

i.e., it satisfies the commutation relations of an angular momentum in
the center of mass frame and is not invariant under pure Lorentz trans-
formations.

The center of mass position is defined as

and satisfies and therefore they cannot be
used as canonical variables, as was pointed out by Pryce 7 in the analysis
of the center of mass of relativistic particles which is briefly sketched in
Chapter 6.

If we had taken as the spin of the system the observable Z = u × U =
q 2  × p 2 ,  then this observable satisfies

so that it is an angular momentum, that transforms like a vector under
rotations, and is invariant under space translations but not under pure
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Lorentz transformations and it is not a constant of the motion, but
satisfies the dynamical equation dZ/dt = P × u. That is why this
observable cannot be considered as the spin of the system.

The Pauli-Lubanski four-vector is defined as usual as the constant of
the motion

W 0  = P · S,     W = H S / c ,

such that the two constants of the motion

(3.121)

commute with the above ten generators and they are Poincaré  invariant
properties of the particle and completely characterize the structure of
this particle. They are the two functionally independent Casimir invari-
ants of the Poincaré group.

The second Lagrangian L2  of (3.108) has the following nonrelativistic
limit for low velocities u << c,

3 . 4  CIRCULAR  ZITTERBEWEGUNG

(3.122)

and we can take for the parameters the values a = m and b = mR/c,
where R is the average radius of the internal motion. When compared
with the nonrelativistic model (2.132), it corresponds to the case of
circular zitterbewegung with constant internal radius, a property also
shared by this relativistic model.

From Lagrangian L2  we get

(3.123)

For the center of mass observer it gives

(3.124)

another internal central motion that can be written in the form

(3.125)

with θ = m /bc². From here we get the relation
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and it yields

(3.126)

Taking the scalar product of (3.125) with u and squaring the result we
reach

and therefore

(3.127)

from which by identification with (3.126) and after the cancellation of
terms in 2 in both sides, we get a single equation for the variables
u ≡ d k/dt and k ,

If we take the derivative with respect to t, the constant coefficients θ²
cancel out and the above relation reduces to

(3.128)

The last two terms can be grouped together into a single term

that also vanishes because k and are parallel, as can be deduced from
(3.125). Therefore, this leads to u · k = 0 and from (3.127) u · = 0 and
it turns out that the internal motion for the center of mass observer is
a circle with constant velocity. From (3.124), if we introduce the value
of parameter b = mR/c, it gives:

(3.129)

The motion, similarly as the nonrelativistic case, has a constant radius
that in this case is given by

(3.130)

that reduces to R for the low velocity limit.
The spin is S = – mk × dk/dt and has, in this frame, the constant

0 , where u is the constant internal velocity for
the center of mass observer. 
absolute value S = muR
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4. LUXONS
Let us consider those mechanical systems whose kinematical space

is the manifold X generated by the variables (t, r , u, ρ) with domains
t ∈ , r  ∈ , ρ ∈ as in the previous case, and u ∈  but now
with u = c. Since u = c we shall call this kind of particles Luxons.
This manifold is in fact a homogeneous space of the Poincaré  group
P, and therefore, according to our definition of elementary particle has
to be considered as a possible candidate for describing the kinematical
space of an elementary system. In fact, if we consider the point in
this  manifold x ≡  (0,0, u,0), the little group that leaves x invariant
is the one-parameter subgroup Vu of pure Lorentz transformations in
the direction of the vector u . Then X ~ P / Vu , is a nine-dimensional
homogeneous space.

For this kind of systems the variables t , r and u transform under P
as in the previous case (3.49, 3.50, 3.51) while the transformation of the
variable ρ, that in general involves γ( u) factors which become infinite,
can be obtained from (3.52), i.e., from the equivalent to

Here, parameter ω is given in (3.21) and φ in (3.22) and by taking the
limit u → c on the r.h.s., we get:

(3.131)

where the functions Fc and G c are given now by:

(3.132)

(3.133)

The kinematical rotation R ( φ) is characterized by the three-vector φ,
which is given by:

(3.134)
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If no rotation is involved (µ = 0) this kinematical rotation reduces to

(3.135)

In this case there also exist among the kinematical variables the con-
straints u = If we analyze equation (3.51) since u' = u = c , the
absolute value of the velocity vector is conserved and it means that u'
can be obtained from u by an orthogonal transformation, so that the
transformation equations of the velocity under P can be expressed as:

u' = R (φ) u . (3.136)

Equation (3.131) also corresponds to

(3.137)

with the same φ in both cases, as in (3.134).
Since the variable u( ) = c , during the whole evolution, we can dis-

tinguish two different kinds of systems, because, by taking the derivative
with respect to of this expression we get = 0 , i.e., systems
for which = 0 or massless systems as we shall see, and systems where

≠ 0 but always orthogonal to u . These systems will correspond to
massive particles whose charge internal motion occurs at the constant
velocity c, although their center of mass moves with velocity below c.

4 . 1  MASSLESS  PARTICLES .
(THE PHOTON)

If = 0, u is constant and the system follows a straight trajectory
with constant velocity, and therefore the kinematical variables reduce
simply to (t, r , ρ) with domains and physical meaning as usual as, time,
position and orientation, respectively. The derivatives and transform
like (3.35) and (3.36) and instead of the variable we shall consider the
linear function ω0 defined in (3.65) that transforms under P:

(3.138)

where, again, φ is given by (3.134).

In fact, from (3.137), since = 0, taking the -derivative,

and the antisymmetric matrix has as essential components
the angular velocity ω 0 ,

(3.139)
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and this matrix transformation leads for its essential components to (3.138).

It transforms as

For this system there are no constraints among the kinematical vari-
ables, and, since = 0, the general form of its Lagrangian is

(3.140)

Funtions , will depend on the
variables (t, r, ρ ) and are homogeneous functions of zero degree in terms
of the derivatives of the kinematical variables ( ). Since ≠ 0 they
will be expressed in terms of u = and Ω = ω0 / which are the true
velocity and angular velocity of the particle respectively.

Invariance of the Lagrangian under P leads to the following transfor-
mation form of these functions under the group P:

(3.141)

(3.142)

(3.143)

Noether’s theorem gives rise, as before, to the following constants of
the motion:

They are translation invariant and therefore independent of t and r .
They will be functions of only (ρ, u, Ω ), with the constraint u = c .
Invariance under rotations forbids the explicit dependence on ρ, so that
the dependence of these functions on ρ and variables is only through
the angular velocity ω 0 .

Energy H = – T , (3.144)

linear momentum P = R , (3.145)

kinematical momentum K = H r /c² – P t – W × u /c² , (3.146)

angular momentum J = r × P + W . (3.147)

In this case the system has no zitterbewegung because the Lagrangian
does not depend on which vanishes. The particle, located at point r,
is moving in a straight trajectory at the speed of light and therefore it
is not possible to find an inertial rest frame observer. Although we have
no center of mass observer, we define the spin by S = J – r × P = W .
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Energy and linear momentum are in fact the components of a four-
vector and with the spin they transform as

If we take in (3.147) the -derivative we get d S/dt = P × u . Since
P and u are two non-vanishing constant vectors, then the spin has a
constant time derivative. It represents a system with a continuously
increasing angular momentum. This is not what we understand by an
elementary particle except if this constant dS/dt = 0. Therefore for this
system the spin is a constant of the motion and P and u are collinear
vectors.

(3.148)

(3.149)

(3.150)

The relation between P and u can be obtained from (3.146), taking the
-derivative and the condition that the spin W is constant,  = 0 =

If we take the scalar product of this
expression with u we also get H = P · u.

We see from (3.136) and (3.150) that the dimensionless magnitude
∈ = S · u /Sc is another invariant and constant of the motion, and we
thus expect that the Lagrangian will be explicitly dependent on both
constant parameters S and ∈ . Taking into account the transformation
properties under P of u, ω 0 and S, given in (3.136), (3.138) and (3.150)
respectively, it turns out that the spin must necessarily be a vector
function of u and ω 0 .

Then, from (3.148) and (3.149), an invariant and constant of the mo-
tion, which vanishes, is (H/c)² – P ². The mass of this system is zero.
It turns out that for this particle both H and P are non-vanishing for
every inertial observer. Otherwise, if one of them vanishes for a single
observer they vanish for all of them. By (3.150), S ² is another Poincaré
invariant property of the system that is also a constant of the motion.

The first part of the Lagrangian , which can
be written as – (H – P · u ) = 0, also vanishes. Then the Lagrangian is
reduced to the third term S · ω0 .

If the spin is not transversal, as it happens for real photons, then
S = ∈ S u /c where ∈ = ±1, and thus the Lagrangian finally becomes:

(3.151)
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From this Lagrangian we get that the energy is H = – ∂L/ ∂ = S · Ω ,
where Ω = ω / is the angular velocity of the particle. The linear0
momentum is P = ∂ L/∂ = ∈ S Ω /c, and, since P and u are parallel
vectors, Ω and u must also be parallel, and if the energy is definite
positive, then Ω = ∈Ω u/c.

This means that the energy H = SΩ. For photons we know that S =
, and thus H = Ω = hv. In this way the frequency of a photon is the

frequency of its rotational motion around the direction of its trajectory.
We thus see that the spin and angular velocity have the same direction,
although they are not analytically related, because S is invariant under
P while Ω is not.

We say that the Lagrangian (3.151) represents a photon of spin S
and polarization ∈ . A set of photons of this kind, all with the same po-
larization, corresponds to circularly polarized light, as has been shown
by direct measurement of the angular momentum carried by these pho-
tons .8 Left and right polarized photons correspond to ∈ = 1 and ∈ = –1,
respectively. Energy is related to the angular frequency H = Ω, and
linear momentum to the wave number P = k, that therefore is related
to the angular velocity vector by k = ∈Ω /c. If it is possible to talk about
the ‘wave-length’ of a single photon this will be the distance run by the
particle during a complete turn.

4 .2 MASSIVE PARTICLES.
(THE ELECTRON)

If we consider now the other possibility, ≠ 0 but orthogonal to
u, then variables transform as in the previous case (3.35) and
(3.36), but for and ω we have:

0

where the rotation of parameter φ is again given by (3.134) and vector
ωφ is:

(3.154)
Expression (3.152) is the -derivative of (3.136) and can also be written
in the form:

(3.155)

and

(3.152)

(3.153)

Expression (3.153) comes from R (ρ') = R ( φ ) R(ρ) and taking the -
derivative of this expression ( ') =ρ (φ) R(ρ) + R (φ ) (ρ), because
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parameter φ depends on through the velocity u( ), and therefore

0
has as essential components the ω

tion (3.154).

corresponds to R (φ) ω and the antisymmetric matrix

φ vector, i.e., equa-

In this case the function Z is defined as in the previous example, and
also in the Galilei case, by

Energy H = –T – (dU/dt) · u ,

linear momentum P = R – (dU/dt),

kinematical momentum K  = H r / c²– P t – Z × u / c² , (3.159)

angular momentum J = r × P + Z .

(3.157)

(3.158)

(3.160)

(3.156)

where T = ∂ L/ ∂ , R i = ∂ L /∂ , U i = ∂ L / ∂ and W i = ∂ L /∂ωi
0 , and

Noether’s theorem provides the following constants of the motion:

The homogeneity condition of the Lagrangian leads to the general
form

Z = u × U + W . (3.161)

Expressions (3.157, 3.158) imply that H/c and P transform like the
components of a four-vector, similarly as in (3.44-3.45), thus defining
the invariant and constant of the motion (H/c)² – P ² = m ²c², in terms
of the parameter m that is interpreted as the mass of the particle.

Observable Z transforms as:

an expression that corresponds to the transformation of an antisymmet-
ric tensor Z µ v with strict components Z 0 i = ( Z × u )i /c, and Z i j =
∈ i j k Zk .

By defining the relative position vector k = Z × u /H, the kinematical
momentum (3.159) can be cast into the form

where q = r – k, represents the position of the center of mass of the
particle.

K = H q/ c² – P t ,

(3.162)
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The spin is defined as usual

and is a constant of the motion. It takes the form

(3.163)

(3.164)

The helicity S · P = Z · P = J · P, is also a constant of the motion.
We can construct the constant Pauli-Lubanski four-vector

with –w
µ

w
µ

= m ²c²S², in terms of the invariant properties m and S of
the particle.

w µ ≡ ( P · S, HS /c), (3.165)

If we take in (3.159) the -derivative and the scalar product with the
velocity u we get the Poincaré invariant relation:

(3.166)

electron, 9 we have H = P · u + β mc² and this relation suggests the
identification

This looks like Dirac’s Hamiltonian, H = cP · α + β mc² when ex-
pressed in the quantum case, in terms of the α and β Dirac matrices.
Since cα is usually interpreted as the local velocity operator u of the

(3.167)

and the internal motion takes place in a plane orthogonal to the constant
spin S. The scalar product with u ≡ d k /dt leads to k · d k/dt = 0,
and thus the zitterbewegung radius k is a constant. Taking the time
derivative of both sides of (3.167), we obtain m c²u = (S × d u/dt),
because the spin is constant in this frame, we get that u and S are
orthogonal and therefore

The center of mass observer is defined by the conditions P = K = 0.
For this observer Z = S is constant, H = mc ² and thus from (3.159) we
get

Here all magnitudes on the right-hand side are measured in the center
of mass frame. We shall come back to this relation after quantization of
this system.

S = m u × k . (3.168)
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Since S and u = c are constant, the motion is a circle of radius R0 =
S/mc. For the electron we take S = /2, and the radius is / 2me c =
1.93 × 10 –13 m., half the Compton wave length of the electron. The
frequency of this motion in the C.M. frame is v = 2 m 20

ec2 /h = 2.47×10
s – 1 , and ω = 2πv = 1.55 × 1021 rad s – 1 . The ratio of this radius to the so-
called classical radius Rcl = e2 / 8πε0 me c2 = 1.409 × 10–15 m, is precisely
R cl / R0 = e 2 / 2ε0 hc = 1/136.97 = α, the fine structure constant. Both
radii are larger than today’s estimated lower bound of electron radius,
based on a model that integrates electromagnetism with gravitation,
giving a value of the order 10 –36 m. 10

Motions of this sort, in which the particle is moving at the speed
of light, can be found in early literature, but the distinction between
the motion of center of charge and center of mass is not sufficiently
clarified. 11, 12

Nevertheless, in the model we are analyzing, the idea that the elec-
tron has a size of the order of the zitterbewegung radius is a plausible
macroscopic vision but is not necessary to maintain any longer, because
the only important point from the dynamical point of view is the center
of charge position, whose motion completely determines the dynamics
of the system. In this form, elementary particles, the kind of objects
we are describing, look like extended objects. Nevertheless, although
some kind of related length can be defined, they are dealt with as point
particles with orientation because the physical attributes are all located
at the single point r.

The transformation equation for the function Z, (3.162) can also be
written as

(3.169)

and therefore and
Since it is orthogonal to u and , for the center of mass observer, it is
also orthogonal to u and for any other inertial observer.

An alternative method of verifying this is to take the time derivative in
(3.159) and (3.160), and thus

i.e.,

and a final scalar product with Z, leads to (H–u·P)u·Z = 0. The first factor
does not vanish since the invariant H 2 /c2 – P 2 = m 2 c2 is positive definite and
if H = u·P, then ( u · P ) 2 /c2 – P 2 with u ≤ c is always negative, then Z · u = 0.
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If we take the time derivative of this last expression, with the condition that
dZ/dt is orthogonal to u, we obtain Z ·    = 0. The observable Z has always
the direction of the non-vanishing vector × u for positive energy particles
and the opposite direction for particles of negative energy.

Equation (3.166) can be recast into the form

(3.171)

where the first two terms give rise to the invariant term Pµ
µ = m c2

cm ,
and the third to the invariant relation

(3.170)

Here t c m is the time observable measured in the center of mass frame,
and the right-hand side, which is positive definite for particles, implies
that Z has precisely the direction of × u. In the case of antiparticles
it has the opposite direction.

We see that the particle has mass and spin, and the center of charge
moves in circles at the speed of light in a plane orthogonal to the spin,
for the center of mass observer. All these features are independent of
the particular Lagrangian of the type (3.156) we can consider. All that
remains is to describe the evolution of the orientation and therefore its
angular velocity. The analysis developed until now is compatible with
many different possibilities for the angular velocity. The behaviour of
the angular velocity depends on the particular model we work with.

For the task of analyzing invariant Lagrangians, the term T + R · =
– H + P · is Poincaré invariant and also the term U · + W · ω0. The
Lagrangian can be written as the sum of two invariant terms, depending
on the two scalars m and S.

To construct invariant terms depending on the kinematical variables
u and ρ and their derivatives we start with the transformation equations
of these variables

and because φ also depends on  , taking the -derivative

In terms of this last equation we know that Ω = (ρ)R T (ρ) transforms
as
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which corresponds to equation (3.153). Because Ω is the antisymmetric
matrix (3.139), its action on a three-dimensional vector u, gives the
vector w = Ω u ≡ ω0 × u, and thus this magnitude transforms as

If we compare this with the transformation of in (3.171), we see that
the dimensionless variables αα e = ( – w )/c, linear in the derivatives
and or in and ω0 , explicitly given by

(3.172)

and

(3.173)

are both orthogonal to the velocity u and they transform under P i n
the form:

(3.174)

At any instant the particle has associated with it three orthogonal
dimensionless vectors, u /c, α e and ωe , (see Figure 3.4) the first of ab-
solute value 1 and the other two of the same invariant size αe = ωe ≡ y .
In this case the velocity u never vanishes but vectors αα e and ωωe are the
equivalent for this system to vectors α α and ω ω given in (3.63) and (3.64)
respectively, in the case of Bradyons.

Figure 3.4. System of three orthogonal vectors linked to the motion of the charge of
the electron with α e = ω e = y ·
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We can form different Poincaré invariant terms as functions of the
kinematical variables and their derivatives. The above y is a first order
invariant in terms of the derivatives and ω0. Similarly, y 2 is a second
order invariant term and expressions and are invariant
terms of third and fourth order, respectively. Since

this implies that
(3.175)

and the term 2 is also a fourth order invariant in the derivatives
of the kinematical variables. We just have to construct among them,
first order invariant terms. For instance,

(3.176)

(3.177)

are possible terms to be included in invariant Lagrangians.
Let us consider the Poincaré invariant Lagrangian expressed in terms

of the first of the invariants in (3.177)

(3.178)

If we set then,

(3.179)

(3.180)

and therefore
(3.181)

When analyzed in the center of mass frame, (3.181) is the constant
spin of the particle. If we choose for the parameter a = m c3 /2, we get
for the angular velocity that its three components are

and as shown in the Figure
3.5.
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Figure 3.5. Center of charge motion of system (3.178) in the C.M. frame.

The time evolution of the body, corresponds to the precession of Ω⊥
around the spin direction with the constant angular velocity Ωl which
is twice the other. This means that the motion is periodic and that
the body frame comes back to its initial position after two turns of the
charge.

If a is negative, then the spin has the opposite direction to the one
depicted in the figure.

To end this section and with the above model of the electron in mind,
it is convenient to remember some of the features that Dirac 13 obtained
for the motion of a free electron. Let point r be the position vector on
which Dirac’s spinor ψ(t, r) is defined. When computing the velocity of
point r, Dirac arrives at:

a) The velocity u = i/ [H, r] = c , is expressed in terms of α matri-
ces and writes, ‘… a measurement of a component of the velocity of a
free electron is certain to lead to the result ±c’.

b) The linear momentum does not have the direction of this velocity u,

the electron with an external electromagnetic field, after performing the

but must be related to some average value of it: … ‘the x1 component
of the velocity, cα1, consists of two parts, a constant part c2p1 H – 1,
connected with the momentum by the classical relativistic formula, and
an oscillatory part, whose frequency is at least 2mc 2 / h , … ’ .

c) About the position r : ‘The oscillatory part of x1 is small, … ,
which is of order of magnitude /mc, …’.

And when analyzing, in his original 1928 paper, 14 the interaction of

α
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square of Dirac’s operator, he obtains two new interaction terms:

where the electron spin is written as S = Σ /2 and

(3.182)

in terms of σ -Pauli matrices and E and B are the external electric
and magnetic fields, respectively. He says, ‘The electron will therefore
behave as though it has a magnetic moment (e /2mc) Σ Σ and an electric
moment ( ie /2mc) α α .  The magnetic moment is just that assumed in the
spinning electron model’ (Pauli model). ‘The electric moment, being a
pure imaginary, we should not expect to appear in the model.’

However, if we look at our classical model, we see that for the center
of mass observer, there is a non-vanishing electric and magnetic dipole
moment

(3.183)

where S is the total spin and Y = – mk × d k/dt is the zitterbewegung
part of spin. The time average value of d is zero, and the average value
of µ is the constant vector µ .

This classical model gives rise to the same kinematical prediction as
the nonrelativistic model described in Sec.4.1. If the charge of the parti-
cle is negative, the current of Fig.3.5 produces a magnetic moment that
necessarily has the same direction as the spin. If the electron spin and
magnetic moments are antiparallel, then we need another contribution
to the total spin, different from the zitterbewegung. All real experiments
to determine very accurately the gyromagnetic ratio are based on the
determination of precession frequencies, but these precession frequencies
are independent of the spin orientation. However, the difficulty to sep-
arate electrons in a Stern-Gerlach type experiment, suggests to perform
polarization experiments in order to determine in a direct way whether
spin and magnetic moment for elementary particles are either parallel
or antiparallel.

Another consequence of the classical model is that it enhances the
role of the so-called minimal coupling interaction jµ A µ . The magnetic
properties of the electron are produced by the current of its internal
motion and not by some possible distribution of magnetic dipoles, so
that the only possible interaction of a point charge at r with the external
electromagnetic field is that of the current j µ , associated to the motion
of point r , with the external potentials.
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5. TACHYONS

domains t ∈ , r ∈ 3 , ρ ρ ∈ 3  as in the previous cases, but now u ∈ 3,
c

with the lower bound u > c. We see that the transformation equations

where as usual, and they

There are three differential constraints among the kinematical vari-
ables, u = , and with the homogeneity condition, this reduces to
three the number of independent degrees of freedom. The Lagrangian
can be written as

(3.184)

Because u > c, the particle is called a Tachyon, and it is a mechan-
ical system whose kinematical space X is the manifold spanned by the
mentioned variables (t, r, u), which are interpreted as the time, position
and velocity of the particle. This manifold is isomorphic to the homoge-
neous space P /SO(3). Because there are no orientation variables, these
systems can never give rise, when quantized, to spin 1/2 particles, as
we shall see in Chapter 4, so that fermions can never have a tachyonic
zitterbewegung from the classical point of view.

under P of the variables (t, r, u) are the same as the ones described
in (3.49 - 3.51), while for the orientation variables (3.52), in the case
u > c, there is no real limit because the γ (u) factors that appear in
the functions F and G, defined in (3.9-3.10), become imaginary, thus
producing a complex result for the transformed variables ρρ '. Then, with
the constraint u > c, the maximal homogeneous space of P is spanned
by the variables ( t, r, u).

transform under P as:

(3.185)

(3.186)

(3.187)

Noether’s theorem defines the following constants of the motion

Let us consider the manifold spanned by the variables (t, r, u, ρρ) with

energy (3.188)
linear momentum (3.189)



RELATIVISTIC ELEMENTARY PARTICLES 161

kinematical momentum , (3.190)

angular momentum (3.191)

The function Z = u × U is always orthogonal to the velocity, and the
energy H and linear momentum P transform like the components of a
four-vector.

If we define the relative position vector k by

(3.192)

then, from (3.190) we get:

(3.193)

and point q moves with constant velocity. Function Z and vector Hk / c ,
transform as

(3.194)

(3.195)
like the strict components of an antisymmetric tensor Z µ v .

It must be observed that the expression that defines Hk /c2 is a vector
equation that is always different from zero. This is true if U and u have
different directions. Otherwise, if U and u have the same direction it
can never vanish because u > c. This suggests that the energy H and
vector k are always non-vanishing magnitudes for every observer. If the
energy is positive definite, the center of mass will have a motion with
velocity below c.

For Tachyons the spin is only of (anti)orbital type. It takes the general
expression

where the relative position of the charge k, given in (3.192), is related
only to the function U, similarly as the particle described in Section 3.2.

The following invariant Lagrangian for tachyonic particles:

(3.196)
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leads in the center of mass frame to the dynamical equations:

(3.197)

where  u ≡d k/ d t .
Similarly to the example shown in Section 3.2, if parameter b is written

as b = m/2ω2 , then this is again a generalization of an isotropic harmonic
oscillator

Due to the factor (u2  – c
2 )

3 / 2
in front of k and because u > c, t h e

velocity can never decrease to the value c.
Charge trajectories of this equations are similar to the ones depicted

in Figure 3.3, but now with velocity u > c.
The internal motion of the charge is a central motion that, being

the spin constant, gives rise to a first integral S = –k × m u, and the
motion takes place in a plane orthogonal to the constant vector S. In
polar coordinates (r, θ) equations (3.197) give:

(3.198)

(3.199)

and the first integral leads to dθ/dt = S / m r 2 . The radial equation
(3.198) becomes

(3.200)

6. INVERSIONS
The space and time inversions are the automorphisms of P, given by

that has solutions with r = constant ≠ 0, and thus circular motions with
constant velocity u > c are also allowed.

(3.201)

(3.202)
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such that the Poincaré group composition law (3.5-3.8) remains invariant
under these transformations. We can extend this action on the kinemat-
ical space X = P in the form:

(3.203)

(3.204)

on the derivatives by:
If we assume that the evolution parameter remains invariant under

inversions, we can define the action of and

(3.205)

(3.206)

and therefore:

(3.207)

(3.208)

hence α  – ω2 2 is invariant under both inversions, while the expression
αα  · ω ω changes its sign.

Lagrangians LB , (3.97) and L T , (3.196) are invariant under a n d
change of sign under while the photon Lagrangian (3.151) changes
the sign under both inversions.

However, Lagrangian LF (3.98) changes the sign of the second term
under P while the first remains the same. Under time inversion we have
the opposite situation.

Lagrangian (3.178) changes the sign under inversions and can be in-
terpreted as representing a system of mass –m.

7. INTERACTION WITH AN EXTERNAL
FIELD

Let us assume that the total Lagrangian of a relativistic spinning par-
ticle, interacting with some external source, is L = L0  + L I , where L 0

is a general Poincaré invariant Lagrangian for a free system. For the
interaction term L I we shall consider the minimal coupling of electro-
magnetism

(3.209)

linear in the derivatives and where the external potentials are functions
only of t and r. Most general interactions will not be analyzed in this
work.
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The total Lagrangian can be written as

The difference with the free particle case is contained in the terms T =
T0  +TI and R = R

=
0 + R I  , with

and R I eA, respectively. Because the interaction term LI  is not an
explicit function of and ω , R , U and W have the0 , the functions T0 0

same expressions as in the free case. Similarly, Z = u × U + W also
has the same expression in terms of the degrees of freedom and their
derivatives as in the free case.

If the interaction term L I is Poincaré invariant, the Noether constants
of the motion will have a part coming from L0 , which we call the mechan-
ical part and represent it with a subindex m, and another part coming
from LI . They take the following form in the case of Luxons

The above mechanical observables have the same analytical expressions
in terms of the kinematical variables and their time derivatives as in
the free particle case. In particular, the mechanical energy and linear
momentum are

This implies that the invariant

(3.210)

defines the same constant parameter m, the rest mass of the system, as
in the free case. This yields the usual replacement Pµ →  Pµ – eA µ  when
dealing with interacting systems

where H and P are the generating functions of translations of the
Poincaré group.

In the general case the interaction term L
I
 is not translation invariant

because of the explicit dependence of the potentials on t and r, and
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therefore the above observables are not constants of the motion. In
terms of the kinematical variables we have to use the constraints L c =
λ ( ) · (u – ), so that the dynamical equations for t, r and u variables
become

(3.211)

(3.212)

(3.213)

We have assumed that L0  does not depend on u variables, which have
been replaced by whenever they appear. For the orientation variables
we shall assume that the only dependence of L 0  of ρ is  through the
angular velocity ω 0 and therefore dynamical equations are the same as
in the free case

Equation (3.213) implies that

Using this solution for Lagrange’s multipliers, the fist equation (3.211)
can be rewritten as

Total energy will be conserved only if the potentials are not explicit
functions of t. In general, by taking the above derivatives, we get

(3.214)

and therefore the variation of the mechanical energy of the particle is
the work of the external electric field along the charge trajectory.

The second equation (3.212) gives rise to

thus showing that total linear momentum is conserved if the potentials
are not explicit functions of the position of the charge. Rearranging
terms we get

(3.215)
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where the Lorentz force F is expressed in terms of the external fields
E =  –∇ φ  – ∂ A/∂t and B = ∇ × A which are defined at the charge
position r.

Because the interaction terms do not affect the analytic expressions
of U and W, and therefore of Z, the separation k between the center
of mass and center of charge is still given by the same expression as in
the free case of Luxons as

The definition of the center of mass q remains the same and this allows
us to write

If we call v = dq/dt the center of mass velocity, then we get as for the
point particle

If the rest mass is not affected by the interaction, taking the time deriva-
tive of (3.210), we get

(3.216)

and using the above expression in terms of the center of mass velocity
we obtain

(3.217)

The non-relativistic equivalent to equation (3.216), with the assumption
that the internal energy of an elementary particle is not affected by the
interaction, is

and since there P m = m v, we also get Equation (3.217).
The variation of the mechanical energy is the work of the total ex-

ternal force, defined at the charge position r, along the center of mass
trajectory. But this has to give the same result as in (3.214). Otherwise,
the assumption that the mass of an elementary particle is not affected
by the interaction will no longer be true. This will mean, for instance,
that an electron under the action of an external field will have a different
mass when the interaction is switched off. This is clearly unphysical.

Because (3.214) can also be written as eu · E = u · F, this implies that
the internal dynamics of the charge is adjusted in such a way that if we
write u = v + w, then necessarily the charge has a component along the
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center of mass motion while the other component w must be orthogonal
to the total external Lorentz force w · F = 0. Therefore, the magnetic
field does not contribute to the variation of energy of the particle but
contributes to the orientation of the zitterbewegung plane, and thus, to
the spin dynamics.
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Chapter 4

QUANTIZATION OF
LAGRANGIAN SYSTEMS

Quantization of generalized Lagrangian systems will suggest that wave
functions for elementary particles must be squared integrable functions
defined on the kinematical space.

We shall use Feynman’s quantization method to show the structure
of the wave function and the way it transforms under the kinematical
or symmetry group of the theory. Once the Hilbert space structure of
the state space is determined, this leads to a specific representation of
the generators of the group as self-adjoint operators and the remaining
analysis is done within the usual quantum mechanical context, i.e., by
choosing the complete commuting set of operators to properly determine
a set of orthogonal basis vectors of the Hilbert space. Special emphasis
is devoted to the analysis of the different angular momentum operators
the formalism supplies. They have a similar structure to the classical
ones, and this will help us to properly obtain the identification of the
spin observable.

The structure of the spin operator depends on the kind of translation
invariant kinematical variables we use to describe the particle, and the
way these variables transform under the rotation group. Since in the
Galilei and Poincaré case, as we have seen in previous chapters, these
variables are the velocity u and orientation α  and they transform in the
same way under rotations in both approaches, then the structure of the
spin operator is exactly the same in both relativistic and nonrelativistic
formalisms.

As we have seen in the classical description the position of the charge
of the particle and its center of mass are different points, and spin is re-
lated to the rotation and internal motion (zitterbewegung) of the charge
around the center of mass of the particle. The magnetic properties of

169
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the particle are connected only with the motion of the charge and there-
fore to the zitterbewegung part of spin. It is this double spin structure
that gives rise to the concept of gyromagnetic ratio when expressing the
magnetic moment in terms of the total spin. If the Lagrangian shows no
dependence on the acceleration, the spin is only of rotational nature, and
the position and center of mass position define the same point. Spin 1/2
particles arise if the corresponding classical model rotates but no half
integer spins are obtained for systems with spin of orbital nature related
only to the zitterbewegung. On the manifold spanned by non-compact
variables u no half-integer spins can be found, because the spin operator
has the form of an orbital angular momentum and eigenvectors are but
spherical harmonics.

Dirac’s equation will be obtained when quantizing the classical rela-
tivistic spinning particles whose center of charge is circling around its
center of mass at the speed c. In that case, the internal orientation of
the electron completely characterizes its Dirac algebra.

Tachyons will be quantized in the same way and because the classical
model has no orientation variables, they always have integer spin.

1. FEYNMAN’S QUANTIZATION OF
LAGRANGIAN SYSTEMS

Let us consider a generalized Lagrangian system as described in previ-
ous chapters and whose evolution is considered on the kinematical space
between points x 1 and x 2 .

For quantizing these generalized Lagrangian systems we shall follow
Feynman’s path integral method. ¹ The Uncertainty Principle is intro-
duced in Feynman’s approach by the condition that if no measurement is
performed to determine the trajectory followed by the system from x 1  t o
x2 , then all paths x( ) are allowed with the same probability. Therefore
a probability definition P[x )], must be given for every path.

But instead of defining the probability associated to each possible
path P [x( )], this is calculated in terms of a probability amplitude,
φ [x( )] for that path such that P [x ( )] = [ φ [x(  )] |², where 0 ≤ P ≤ 1 .
But in general φ does not need to be a positive real number; in fact it
is a complex number. Thus, to every possible trajectory followed by the
system, x( ) in X space, Feynman associates a complex number φ[  x ( )]
called the probability amplitude of this alternative, given by

(4.1)
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where N is a path independent normalization factor, and where the
phase of this complex number in units of    is the classical action of the
system A [x ] (x1, x 2 ) along the path x   (      ). Once we perform the integration
along the path, this probability amplitude becomes clearly a function of
the initial and final points in X space, x 1 and x 2 , respectively.

In this Feynman statistical procedure, the probability amplitude of
the occurrence of any alternative of a set of independent alternatives
is the sum of the corresponding probability amplitudes of the different
independent events. The probability of the whole process is the square
of the absolute value of the total probability amplitude. This produces
the effect that the probability of the whole process can be less than the
probability of any single alternative of the set. This is what Feynman
calls interfering statistics.

Then, the total probability amplitude that the system arrives at point
x 2  coming from x 1 , i.e., Feynman’s kernel K(x1 , x 2 ), is obtained as the
sum or integration over all paths, of terms of the form of Eq. (4.1).
Feynman’s kernel K(x1, x 2 ), will be in general a function, or more pre-
cisely a distribution, on the X × X manifold. If information concerning
the initial point is lost, and the final point is left arbitrary, say x, the
kernel reduces to the probability amplitude for finding the system at
point x, i.e., the usual interpretation of the quantum mechanical wave
function Φ (x). By the above discussion we see that wave functions must
be complex functions of the kinematical variables.

We thus see that Feynman’s quantization method enhances the role of
the kinematical variables to describe the quantum state of an arbitrary
system, in spite of the independent degrees of freedom. We consider that
this is one of the reasons why the kinematical variables have to play a
leading role also in the classical approach.

We are used to consider in quantum mechanics, instead of a single
function Φ(x), multicomponent wave functions, i.e, a set of linearly in-
dependent functions ψ i (t, r ) defined on space-time and labeled with a
discrete subindex that runs over a finite range, such that it can be con-
sidered as a vector valued function in a finite dimensional complex vector
space. In general this finite space carries some irreducible representa-
tion of the rotation group and each component ψ i represents a definite
spin state of the system. Nevertheless, our wave function Φ (x) depends
on more variables than space-time variables. Once we define later the
complete commuting set of observables to obtain, in terms of their si-
multaneous eigenvectors, an orthonormal basis for the Hilbert space of
states, we shall find that Φ (x) can be separated in two parts. One part
φ (t, r ) depending on space-time variables and another part χ that de-
pends on the remaining translation invariant kinematical variables, that
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in our case will reduce to the velocity u and orientation α. It is this
possible separation of our wave function that will produce the emergence
of the different components of the usual formalism.

To see how the wave function transforms between inertial observers,
and therefore to obtain its transformation equations under the kinemat-
ical groups, let us consider that O and O' are two inertial observers
related by means of a transformation g ∈ G, such that the kinematical
variables transform as:

(4.2)

If observer O considers that the system follows the path ( ), then
it follows for O' the path  ( ) = ƒ( ( ) , g) and because the action
along classical paths transforms according to Eq. (1.60), the probability
amplitude for observer O' is just

i.e.,

where the last phase factor is independent of the integration path. If we
add all probability amplitudes of this form, it turns out that Feynman’s
kernel transforms as:

(4.3)

If information concerning the initial point x  is lost, the wave function1
transforms as the part related to the variables x , up to an arbitrary2

function on G,

( 4 . 4 )

or in terms of unprimed x variables

(4.5)

where θ ( g) is some function defined on G but independent of x.
Since our system is somewhere in X space, the probability of finding

the system anywhere is 1. Then we have to define the way of adding
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probabilities at different points x ∈ X. If we define a measure on X,
µ (x), such that dµ (x) is the volume element in X space and  | Φ ( x )|²d µ (x )
is interpreted as the probability of finding the system inside the volume
element dµ(x) around point x, the probability of finding it anywhere in
X must be unity, so that

Since from (4.5)

(4.6)

(4.7)

it is sufficient for the conservation of probability to assume that the mea-
sure to be defined µ (x) is group invariant. In that case, equation (4.7)
implies also that inertial observers measure locally the same probability.
This will have strong consequences about the possibility of invariance
of the formalism under arbitrary changes of phase of the wave function.
But the phase can be changed in a different manner at difIerent points x.
We can use this fact to further impose the local gauge invariance of the
theory. It must be remarked that this arbitrary change of phase β ( x )
is not only a phase on space-time, but rather on the whole kinematical
space of the system and this enlarges the possibilities of analyzing dif-
ferent transformation groups that can be more general than the original
kinematical groups, because they act on a larger manifold.

Consequently, the Hilbert space H whose unit rays represent the pure
states of the system is the space of squared-integrable functions (X ,  µ)
defined on the kinematical space X, µ(x) being an invariant measure
such that the scalar product on H is defined as

(4.8)

Φ * (x) being the complex conjugate function of Φ (x). There is an arbi-
trariness in the election of the invariant measure µ (x) but this will be
guided by physical arguments. Nevertheless, the invariance condition
will restrict the possible measures to be used.

1 . 1 REPRESENTATION OF OBSERVABLES
Wigner’s theorem, 2,3  implies that to every symmetry g ∈ G of a

continuous group, there exists a one to one mapping of unit rays into
unit rays that is induced on H by a unitary operator U g )  defined up to(
a phase that maps a wave function defined on x into an arbitrary wave
function of the image unit ray in x'. The Relativity Principle is a strong
symmetry of physical systems that defines the equivalence between the



174 KINEMATICAL THEORY OF SPINNING PARTICLES

set of inertial observers whose space-time measurements are related by
means of a transformation of a kinematical group G. Now, if we interpret
Φ ( x ) as the wave function that describes the state of the system for the
observer O and Φ ' (x ) for O', then we have

(4.9)

Since the θ (g) unction gives rise to a constant phase we can neglectf
it and then take as the definition of the unitary representation of the
group G on Hilbert space H

(4.10)

Gauge functions satisfy (1.62), and therefore the phase term can be
replaced by

(4.11)
because gauge functions can always be chosen such that α (0; x ) = 0
and the group function   ζ(g ) =  ξ ( g,g– 1 ) giving rise also to a constant
phase, can be suppressed. We thus define the transformation of the wave
function by

(4.12)

If the unitary operator is represented in terms of the corresponding self-
adjoint generators of the Lie algebra in the form

(4.13)

then, for an infinitesimal transformation of parameters δgσ its inverse
transformation has infinitesimal parameters –δgσ , we obtain at first
order in  δgσ

while
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and

But because α (0; x ) = 0,

and the substitution of the above terms in (4.12) and further identifica-
tion of the first order terms in δgσ imply that the self-adjoint operators
X σ when acting on the wave functions have the differential representa-
tion

(4.14)

where

(4.15)

If we restrict ourselves to transformations of the enlarged configura-
tion space (t,q ) that can be extended to the whole kinematical spacei

, then, using the same notation as in (1.43)-(1.46),
if the infinitesimal transformation is of the form

these generators take the form

(4.16)

When compared with the Noether constants of the motion (1.52) written
in the form

(4.17)

we see a certain kind of ‘correspondence recipe’. When restricted
to kinematical groups, the functions Bσ ( x) of (1.52), are obtained from
the Lagrangian gauge functions α (g ; x ), by (1.61), which is exactly the
same derivation as the functions vσ (x ) above in (4.15). Now, by iden-
tifying the different classical observables and generalized momenta that
appear here in (4.17) with the corresponding differential operators of

(4.16) that multiply the corresponding Mi σ
( s )

function, we get: the gener-

alized Hamiltonian H = p i
(s ) qi

( s )
– L , which is multiplied in (4.17) by the
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function  Mσ , is identified with the operator i ∂ / ∂ t which is also in front
of the function Mσ in (4.16), and similarly, the generalized momentum

pi , the factor that multiplies the function M
( s ) , with the differen-( s + 1 ) i σ

tial operator –i ∂ /∂ q
(s )

, for s = 0, . . . , k – 1, because the functionsi 

v (x ) = B ), are the same.σ  (xσ

Remember that p i  and q (s ) are canonical conjugate variables.( s +1) i

Then, each generalized momentum is replaced by ( / i) times the dif-
ferential operator that differentiates with respect to its conjugate gener-
alized coordinate and the generalized Hamiltonian by i ∂ /∂ t.

The Heisenberg representation is that representation in which the
time dependence has been withdrawn from the wave function by means
of a time dependent unitary transformation. Then the wave function in
this representation depends on the kinematical variables with the time
excluded, i.e., it depends only on the generalized coordinates q ( r ) 

. There-i
fore, when acting on the wave function in the Heisenberg representation

, the observables q
( r)  and p j satisfy the canonicali ( s )

commutation relations

If functions  vσ (x ) in (4.14) vanish, the Xσ generators satisfy the com-
mutation relations of the group G. But if some v σ( x ) ≠ 0  the  X σ  
generators do not satisfy in general the commutation relations of the
initial group G where they come from, but rather the commutation re-
lations of a central extension of G. The group representation is not a
true representation but a projective representation of G as shown by
Bargmann. 4

In fact, from (4.10) we get

acting now on the left with U(g2 ) ,

while acting on Φ (x ) with U (g2 g1),

(4.18)

(4.19)
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If we define (g2 g1 ) – 1 x = g 1
–1 g2

–1 x = z, then g 1 z = g 2
–1 x and because

gauge functions satisfy (1.62), we write

(4.20)

and by comparing (4.18) with (4.19), taking into account (4.20), we
obtain

(4.21)

Since Φ ( x) is arbitrary, we have a projective representation of the group
G characterized by the non-trivial exponent ξ(g , g ' ) .

For both Galilei and Poincaré particles the kinematical space is the
ten-dimensional manifold spanned by the variables (t, r, u, α), t being
the time, r the charge position, u the velocity and α the orientation
of the particle. Thus in the quantum formalism the wave function of
the most general elementary particle is a squared-integrable function
Φ ( t, r, u, α) of these kinematical variables. For point particles, the kine-
matical space is just the four-dimensional space-time, so that wave func-
tions are only functions of time and position, but spinning particles will
have to depend on the additional variables like velocity and orientation.
The spin structure will thus be related to these additional variables.

2. NONRELATIVISTIC PARTICLES
Let G be the Galilei group. Although it is a very well-known example,

we shall consider first the simplest case of a point-like particle to show
the power of the general formalism.

2.1 NONRELATIVISTIC POINT PARTICLE
The kinematical space of a point particle is the space-time manifold

and therefore the wave function is just a complex function ψ(t, r) defined
on this manifold. Kinematical variables transform according to

(4.22)

(4.23)

and the gauge function for this homogeneous space is

(4.24)

where v and α are group parameters, m defines the mass of the system
and thus the ten selfadjoint generators of the projective unitary rep-
resentation of the Galilei group G, taking into account (4.22-4.23) and
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(4.14) and (4.15), or alternatively the so-called correspondence recipe
between the Noether constants of the motion (2.83-2.86), and the group
generators by H → i ∂/∂ t, the generalized momentum p ≡ P → – i
they are given by

(4.25)

(4.26)

It is easily checked that these operators satisfy the commutation relations
of the extended Galilei group, as described in Section 1. of Chapter 2.

The Casimir operators of the extended Galilei group are the internal
energy H 0  = H – P 2 / 2m, the mass operator M = m and the absolute
value of spin ( J – r × P ) 2 which vanishes in this case. All of them
in any irreducible representation are multiples of the unit operator and
therefore H 0 and m are constant real numbers. When acting with the
internal energy operator on any wave function, this satisfies

i.e., Schroedinger’s equation

(4.27)

If we look at the commutation relations of the extended Galilei group,
we can find simultaneous eigenfunctions of the Schroedinger operator,
the energy H and the linear momentum P , so that these states are
described by plane waves.

We can check that Schroedinger’s equation is a Galilei invariant wave
equation 5 under a proper transformation of the wave function according
to the projective representation (4.4). Wave function transforms in the
way:

To see this let us consider a one-dimensional case in which the wave
function is  ψ (t, x) and the transformation between the unprimed and
primed variables is t = t' and x = x' – vt'. The gauge function reduces
to

Then
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the derivatives and thus

Similarly

and therefore whenever ψ satisfies equation (4.27), then satisfies

and  we  see  that  the   projective   unitary  representations   of  the   Galilei
group lead to invariant wave equations. In the three-dimensional case
the proof is similar. As was pointed out by Inönü and Wigner 6 t h e
true irreducible unitary representations of the Galilei group are void of
physical content, since from the projective representations point of view
they correspond to unexistent massless Galilei systems.

This proof of the invariance of Schroedinger’s equation is unnecessary
and has been done only for pedagogical reasons. We must remark that
the internal energy Casimir operator is Galilei invariant, and therefore
H 0 = H' – P' ² /2m = H – P²/2 m giving rise also in the primed frame
to Schroedinger’s equation.

2 . 2 NONRELATIVISTIC SPINNING
PARTICLES. BOSONS

Now let us apply the formalism to the most interesting case of spin-
ning particles. Let us consider next Galilei particles with (anti)orbital
spin. This corresponds for example to systems for which X = G/SO(3)
and thus the kinematical variables are time, position and velocity. A
particular classical example is given in Chapter 2, Section 4. by the free
Lagrangian

with u = d r/dt. For the free particle, the center of mass q = r – k has
a straight motion while the relative position vector k follows an elliptic
trajectory with frequency ω around its center of mass, being the spin
related to this internal motion. It is expressed as S = – mk × d k / d t .

The kinematical variables transform under G in the form

(4.28)

(4.29)
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(4.30)

(4.31)

The wave functions are functions on X and thus functions of the variables
(t, r, u). On this kinematical space the gauge function is the same as
in (4.24), where m defines again the mass of the system. Taking into
account as in the previous example the correspondence recipe for the
Hamiltonian the first generalized momentum p1  ≡ P →

 –i ∇ and the other generalized momentum the
generators of the projective representation are given by

(4.32)

 ≡ u variables. It is impor-

which are the canonical commutation relations between the linear mo-
mentum and position for a point particle and therefore these canonical
commutation relations between the total linear momentum and the cen-
ter of mass position for a spinning particle are already contained in
the commutation relations of the Lie algebra of the kinematical group.
Therefore the quantum mechanical operator

(4.33)

where  ∇  is the gradient operator with respect to q1   ≡  r variables and  ∇ u
the gradient operator with respect to the q2
tant to stress that this representation of the generators is independent of
the particular Lagrangian that describes the system. It depends only on
the kinematical variables  (t, r, u) we use to describe the system, with the
transformation equations (4.29-4.31), and of the gauge function (4.24).

If we define q = r – k = (K + P t)/m, it satisfies the commutation
relations with P ,

(4.34)

can be interpreted as the center of mass position operator. Discussion
of other possibilities for the center of mass position operator are delayed
till Chapter 6.

In this representation, one Casimir operator is the internal energy
H – P 2 /2m. We see that the spin operator is defined as usual
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written in terms of two non-commuting terms, it satisfies

i.e., it is an angular momentum operator, transforms like a vector under
rotations and is invariant under space and time translations and under
Galilei boosts, respectively. The second part of the spin operator is of
order     so that it produces a very small correction to the first Z part.

Operators Z satisfy the commutation relations

i.e., Z is an angular momentum operator, transforms like a vector under
rotations and is invariant under space and time translations but not
under Galilei boosts. It is usually considered as the quantum mechanical
spin operator.

We see however, that the angular momentum operator J is split into
two commuting terms r × P and Z. They both commute with H, but the
first one is not invariant under space translations. The Z operators are
angular momentum operators that only differentiate the wave function
with respect to the velocity variables, and consequently commute with
H and P, and although it is not the true Galilei invariant spin operator,
we can find simultaneous eigenstates of the three commuting operators
H – P 2 /2m, Z2  and Z3 . Because the Z operators only affect the wave
function in its dependence on u variables, we can choose functions with
the variables separated in the form  so that

(4.35)

(4.36)

(4.37)

The space-time dependent wave function Ψi(t, r),  satisfies Schroedinger’s
equation and is uncoupled with the spin part χ(u).

Due to the structure of Z2  in terms of the u variables, which is that
of an orbital angular momentum, the spin part of the wave function is
of the form

(4.38)

f(u) being an arbitrary function of the modulus of u and  the
spherical harmonics on the direction of u.

For the center of mass observer, S = Z and both angular momentum
operators are the same. But for an arbitrary observer, Z operators do
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not commute with the boosts generators so that its absolute value is
not Galilei invariant, while S is. But the splitting of the wave function
into a multiple-component function that reflects its spin structure is an
intrinsic property that can be done in any frame.

It turns out that if for an arbitrary observer Z is not the spin of the
system, r × P is not the conserved orbital angular momentum, because
r does not represent the position of the center of mass of the particle.

When there is an interaction with an external electromagnetic field,
equation (4.35) is satisfied for the mechanical parts Hm = H – e φ a n d
P m = P – e A and we thus obtain the usual equation

(4.39)

This formalism, when the classical spin is of orbital nature, does not
lead to half integer spin values, and therefore, from the quantum me-
chanical point of view these particles can be used only as models for
representing bosons.

2 .3 NONRELATIVISTIC SPINNING
PARTICLES. FERMIONS

Other examples of nonrelativistic spinning particles are those which
have orientation and thus angular velocity. For instance, if X = G/

being the subgroup  of pure Galilei transformations, then the
kinematical space is spanned by the variables (t, r, α). This corresponds
for instance to the Lagrangian system described in Section 4. of Chapter
2,

(4.40)

The particle travels freely at constant velocity while it rotates with
constant angular velocity ω. The classical spin is just S = I ω,  and the
center of charge and center of mass represent the same point.

To describe orientation we can think of the three orthogonal unit
vectors e i, i = 1, 2, 3 linked to the body, similarly as in a rigid rota-
tor. If initially they are taken parallel to the spatial Cartesian axis of
the laboratory inertial frame, then their nine components considered by
columns define an orthogonal rotation matrix Rij (α) that describes the
triad evolution with the initial condition Ri j( t = 0) =  δ i j .

Now, kinematical variables t, r and ρ transform under G in the form

(4.41)

(4.42)
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(4.43)

On the corresponding Hilbert space, the Galilei generators are given by:

(4.44)

(4.45)

ρ  being the gradient operator with respect to the ρ variables and in
the ρ parameterization of the rotation group.

The W part comes from the general group analysis. The group gen-
erators in this parametrization Xi  will be obtained from (4.43) and ac-
cording to (1.33) and (1.35). They are obtained as

that can be written in vector notation as

They satisfy the commutation relations

and therefore operators or in vector notation

(4.46)

will satisfy the angular momentum commutation relations

(4.47)

In this way since L and W commute among each other, we also get
[J, J]

In this example the center of mass and center of charge are the same
point, L = r × P is the orbital angular momentum associated to the
center of mass motion and W ≡ S is the spin operator. The spin
operator commutes with H, P and K and the wave function can be
separated as leading to the equations

(4.48)
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(4.49)

(4.50)

Bopp and Haag 7  succeeded in finding s = 1/2 solutions for the system
of equations (4.49) and (4.50). They are called Wigner’s functions. 8

Solutions of (4.49) for arbitrary spin s are but a linear combination of the
matrix elements of a ( 2s + 1) × (2s + 1) irreducible matrix representation
of the rotation group as can be derived from the Peter-Weyl theorem on
finite representations of compact groups. 9 , 1 0 , 1 1 We shall deal with the
s = 1/2 functions in Section 3., where explicit expressions and a short
introduction to the Peter-Weyl theorem, will be given.

To describe fermions, the classical particles must necessarily have com-
pact orientation variables as kinematical variables, otherwise no spin 1/2
values can be obtained when the classical spin is related only to the zit-
terbewegung.

Φ (t, r, u, ρ ) and the spin structure will contain both contributions from
the zitterbewegung part and from rotation.

Kinematical variables transform under G as

(4.54)

(4.51)

(4.52)

(4.53)

The differential representation of the ten generators is obtained as

(4.55)

(4.56)

 
in terms of three commuting angular momentum operators, L ≡ r × P ,

2.4 GENERAL NONRELATIVISTIC
SPINNING PARTICLE

More general nonrelativistic particles will be described by considering
larger kinematical spaces like the whole Galilei group itself, where the
particle wave-function will be a function of the ten kinematical variables

where the total angular momentum operator J = L+Y+W is expressed
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the zitterbewegung part Y ≡ u × U and the part related to rotation
W. All these three operators produce the derivative of the wave function
with respect to different kinematical variables.

These ten generators satisfy the commutation relations of the ex-
tended Galilei group. We get again that the Casimir operator that de-
scribes the internal energy H0 = H – P²/2m, gives rise to Schroedinger’s
equation and commutes with the Y and W spin operators. This allows
us to consider wave functions of the form

(4.57)

which separates the space-time part from the internal part that describes
its spin structure. Index j runs over a finite range for elementary parti-
cles. The interest is to obtain quantum mechanical models of the lowest
lying spin values, in particular the description of spin 1/2 particles. In
this way we shall deal with the analysis of spin 1/2 wave functions re-
lated to the u and ρ dependence of the general wave function in the next
section, before the analysis of relativistic particles. The structure of the
general wave function (4.57) is exactly the same in both formalisms and
therefore the spin part χ j ( u, ) will be obtained by the same means. ρ

3 . SPINORS
In this section of mathematical content we shall review the main prop-

erties of spinors, in particular those connected with the possible repre-
sentation of the wave function to describe spin 1/2 particles. We shall
describe the representations in terms of eigenfunctions of the different
commuting spin operators. But it must be remarked that in addition to
the spin operators in the laboratory frame we also have spin operators
in the body frame, because our general spinning particle has orientation,
and therefore, a local Cartesian frame linked to its motion. This pro-
duces the result that for a spin 1/2 particle the wave function necessarily
is a four-component object.

The general wave function is a function of the ten kinematical vari-
ables, Φ ( t, r, u, ρ ), and the spin part of the system related to the trans-
lation invariant kinematical variables u and ρ is

S = u × U + W = Y + W , (4.58)

where Y and W are given by

(4.59)

in the tan (α /2) representation of the rotation group, as has been deduced
in previous sections. ∇  u  and ∇ ρ are respectively the gradient operators
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with respect to u and ρ variables. These operators always commute
with the H = i  ∂ / ∂ t and P = – i ∇ operators, and therefore they are
translation invariant. This feature allows the separation of the general
wave function according to (4.57).

The above spin operators satisfy the commutation relations

(4.60)

and thus

Because we are describing the orientation of the particle by attaching
to it a system of three unit vectors e i  , whose orientation in space is
described by variables ρ or α, then, if at initial instant  = 0 we choose
the body axes coincident with the laboratory axes, the components of
the unit vectors e i at any time are

(4.61)

in the normal parametrization and also in the ρ parametrization by

(4.62)

where the Cartesian components of the rotation axis unit vector n are:

(4.63)

where θ is the polar angle and φ the usual azimuth angle. Explicitly:

in the α = α n, or normal parametrization of the rotation group. In the
ρ = tan(α /2)n parametrization the body frame is
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where
In addition to the different components of the spin operators Si , Yi  and

Wi  in the laboratory frame, we also have another set of spin operators.
They are the spin projections on the body axes e i , i.e., the operators

and = respectively. In particular, spin
operators Ti , collecting terms from (4.62) and (4.59), take the expression

and after some tedious manipulations we reach the final result, written
in vector notation as

(4.64)

We see, by inspection, that this result can also be obtained from the ex-
pression of W in (4.59), just by replacing ρ by – ρ , followed by a global
change of sign. This is because we describe the orientation of the parti-
cle by vector ρ in the laboratory frame from the active viewpoint, i.e.,
with the laboratory reference frame fixed. However, its orientation with
respect to the body frame is described by the motion of the laboratory
frame, whose orientation for the body is –ρ, and the global change of
sign comes from the change from the active point of view to the pas-
sive one. This is the difference in the spin description in one frame or
another.

It satisfies the following commutation relations
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It turns out that to find the most general spinor is necessary to seek
also solutions of the Vj (ρ) part, depending on the orientation variables.
This goal will be achieved in the next section, where we consider the
action of the rotation group on itself as a transformation group.

Functions Uj (u) are multiples of spherical harmonics defined on the
orientation of the velocity vector u , because the Y operator has the
structure of an orbital angular momentum in terms of the u variables,
and thus its eigenvalues are integer numbers. The global factor left out
is an arbitrary function depending on the absolute value of the velocity
u .

where the sum runs over a finite range, and where Uj (u) will be eigen-
functions of Y ² and Vj (ρ) of W ², respectively.

tors of the three commuting operators on the right-hand side of (4.65).
Operators Y and W produce derivatives of the wave function with re-
spect to u and ρ variables, separately. Thus, each χ (u, ρ) can again be
separated as

(4.66)

and we see from (4.60) that is expressed as the sum of three commuting
terms and its eigenvectors can be obtained as the simultaneous eigenvec-

(4.65)

so that the complete commuting set of operators that describe the spin
structure must also include spin projections on the body axes.

The spin squared operator is

But we also have the orientation of the particle, and therefore the spin
projections on the body axes. These projections commute with S2 a n d
S3 , and it is possible to choose another commuting spin operator, like
the T3  operator, and therefore our wave function can be taken also as
an eigenvector of T3 ,

To find eigenstates of the spin operator we have to solve equations of
the form:

and in general all spin projections on the body frame Ri , Mi  and  Ti ,
commute with all the spin projections on the laboratory frame Si , Y i
and Wi . This is in agreement with the quantum mechanical uncertainty
principle, because spin components with respect to different frames are
compatible observables.
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wave function, V (ρ). If there is no contribution to spin from the zitter-

The Casimir operator of the rotation group W 2 i s :

3.1 SPINOR REPRESENTATION ON SU(2)
We shall describe now in detail the orientation part of the general

bewegung part Y , the spin operator (4.58) reduces to the W operator
given in (4.59). To solve the corresponding eigenvalue equations we shall
first represent the spin operators in spherical coordinates.

If we represent vector ρ = tan(α /2) n = rn in spherical coordinates
(r, θ, φ) ,  with r = |ρ| = tan(α /2) and θ and φ the usual polar and
azimuth angles, respectively, then unit vector n has the Cartesian com-
ponents given in (4.63). If from now on we take  = 1, the spin operators
(4.59) are represented by the differential operators

The up and down spin operators defined as usual by W ±  = W1 ± iW 2

a r e

They satisfy the commutation relations
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We can check that (Wi )* = –Wi and  W+ =  – (W– )*, where * means to
take the complex conjugate of the corresponding operator.

If Fs
m (r ,θ,φ ) is an eigenfunction of W ² and W 3 , it satisfies the differ-

ential equations:

To find solutions of the above system we know that we can proceed in the
following way. Let us compute first the eigenfunctions of the form Fs

s .
Then operator W+  annihilates this state W+Fs

s
 = 0 and by acting on

this function with operator W–  we can obtain the remaining eigenstates
Fs

m of the same irreducible representation characterized by parameter
s and for –s ≤ m ≤ s. Then our task will be to obtain first the F s

s

functions.
Now, let us consider eigenfunctions F s

s  that can be written in separate
variables as F s

s (r,θ,φ) = A (r)B(θ) C (φ). Then

gives rise to

where A ' is the derivative of A and so on, and by dividing both sides by
ABC we have

Now, the third term on the left-hand side must be a constant, because
the remaining terms are functions independent of φ. Therefore, this term
is written as C '(φ) / C(φ) = ik and thus C (φ ) = ei kφ up to an arbitrary
constant factor. Since C(φ + 2π) = C (φ) this implies that the constant
k must be an integer. The other two functions satisfy

If there exist solutions with real functions A and B, then necessarily
k = 2s so that the eigenvalue s can be any integer or half integer, and
equation (4.67) can be separated in the form:

where, up to constant factors, the general solution is

(4.68)

(4.67)
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By acting on this solution F s
s ≡ A (r ) B(θ) C (φ),  with W + , since

W+ Fs
s = 0, it gives:

By dividing all terms by A B, taking into account (4.68), we get the
condition (p – 2s) (1 +  i r  cos θ) = 0. Then there exist real solutions
in separate variables whenever p = 2s = k. They are given, up to a
constant factor, by

(4.69)

For s = 1/2 and after the action of W – we obtain the two orthogonal
spinors

that produce a two-dimensional representation of the rotation group.
We can similarly check that 

By inspection of the structure of  operators, if we take the complex
conjugate of expression W + F s

s  = 0 we get – W_ (F s
s )* = 0 and therefore

F s (  s )* ~ G –s
s  so that taking the complex conjugate spinors of the above

representation we obtain another pair of orthogonal s = 1/2 spinors,

The remaining representations for higher spins can thus be obtained
by the same method, or by taking tensor products of the above two-
dimensional representations. For instance, for s = 1 we can obtain the
following three orthogonal representations. From (4.69) with s = 1 and
acting with the W – operator we get

that can also be obtained as the tensor product  The complex
conjugate of this comes from 
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and finally from

and similarly for higher spins. One representation for s = 3/2 is

If we work in the normal or canonical representation of the rotation
group, where the parameters are α = αn, this amounts to replacing
the variable r = tan( α /2) in terms of parameter α and expressing the
differential operator ∂/∂r in terms of ∂ / ∂ α , and then the spin operators
are given by
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(4.71)

and the orthogonal spinors of the two two-dimensional representations
can be written as

(4.70)

and

We have mentioned that the different spinors are orthogonal. To
endow the group manifold with a Hilbert space structure it is necessary
to define a hermitian, definite positive, scalar product. The Jacobian
matrix of variables  ρ ' in terms of variables ρ given in (4.43), has the
determinant

and thus the transformation of the volume element

We also get from (4.43) that

and then the measure

is in fact an invariant measure.
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In spherical coordinates it is written as

and in the normal representation is

Since the rotation group is a double-connected group, the above mea-
sure must be defined on a simply connected manifold, i.e., on the univer-
sal covering group of  SO (3), which is SU(2). The SU (2) group manifold
in the normal representation is given by the three-dimensional sphere of
radius 2π  and where points on the surface of this sphere represent a
unique SU(2) element, namely the 2 × 2 unitary matrix – The nor-
malized invariant measure becomes

(4.72)

Therefore, the hermitian scalar product will be defined as

(4.73)
where f * is the complex conjugate function of f.

All the previous computed spinors are orthogonal vectors with respect
to the group invariant measure (4.72). In particular, the normalized
s = 1/2 spinors are those given in (4.70)-(4.71), multiplied by   

The spin projection operators on the body axis ei linked to the par-
ticle, are given in (4.64) in the ρ parametrization, and we have seen
that they differ from the spin operators W only in the change of sign of
the second term, or alternatively a global change of sign followed by the
change ρ → −ρ. In the normal parametrization this corresponds to the
change α → − α and also a global change of sign.

It can be checked as mentioned before, that

(4.74)

(4.75)

Because of the minus sign on the right-hand side of (4.74) spin oper-
ators T are often said to satisfy the so-called ‘anomalous’ commutation
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relations of spin, while they commute with the Wj . We have seen that
this is only a matter of active or passive interpretation.

Since W 2  = T 2  we can find simultaneous eigenvectors of the operators

W 2 ,  W3 and T3 , which will be denoted by D mn
(s )

(α) in such a way that

Since  by producing the change α → −α
we get and followed by a global change
of sign it reduces to

so that the above spinors (4.70)-(4.71) are also eigenvectors of T3.
With this notation, the four normalized spinors (4.70)-(4.71) become:

where spinors   are eigenvectors of T 3  with eigenvalue –1/2 while  
spinors are of eigenvalue 1/2. Because they span a four-dimensional
vector space we shall choose as the four basis vectors the normalized
spinors denoted by the corresponding eigenvalues |s,m,n > as:

(4.76)

(4.77)

(4.78)

(4.79)

They  form  an  orthonormal  set  with  respect  to  the  normalized  invariant
measure  (4.72)  and  with  the  scalar  product  defined  in  (4.73).

The  important  feature  is  that  if  the  system  has  spin  1/2,  although
the  s  =  1/2  irreducible  representations  of  the  rotation  group  are  two-
dimensional,  to  describe  the  spin  part  of  the  wave  function  we  need  a
function  defined  in  the  above  four-dimensional  complex  Hilbert  space,
because  to  describe  orientation  we  attach  some  local  frame  to  the  parti-
cle,  and  therefore  in  addition  to  the  spin  values  in  the  laboratory  frame
we  also  have  as  additional  observables  the  spin  projections  in  the  body
axes,  which  can  be  included  within  the  set  of  commuting  operators.

Ψ 
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3.2

The matrix representation of any observable A that acts on the ori-
entation variables or in this internal four-dimensional space spanned by
these spin 1/2 wave functions Φi , is obtained as A i j =< Φ i AΦ > ,| j

i, j = 1,2,3,4. Once these four normalized basis vectors are fixed, when
acting on the subspace they span, the differential operators Wi and T i

have the 4 × 4 block matrix representation

(4.80)

(4.81)

where σ are the three Pauli matrices and represents the 2 × 2 unit
matrix.

If we similarly compute the matrix elements of the nine components of
the unit vectors (ei )j , i  j = 1, 2, 3 we obtain the nine traceless hermitian,
matrices

(4.82)

We see that the different components of the unit vectors e i  , in general do
not commute. The eigenvalues of every e i  j ,  in this matrix representation
of definite spin, are ±1/3. However, the matrix representation of the
square of any component is (ei j)

2 = /3, so that the magnitude of each
vector ei

2 = 
j 
(ei j )2 = when acting on these wave functions. The

eigenvalues of the squared operator (ei j )2 are not the squared eigenvalues
of ei j. This is because the function ei j Φ k does not belong in general to
the same space spanned by the Φk , k = 1, . . . ,4 although this space is
invariant space for operators W i and Tj . In fact, each function ei jΦk i s
a linear combination of a spin 1/2 and a spin 3/2 wave function.

3 . 3 

The above spinors can also be obtained by making use of an important
theorem for representations of compact groups, known as the Peter-Weyl
theorem, 1 2 which is stated without proof that can be read in any of the
mentioned references.

Theorem.- Let D (s ) (g) be a complete system of non-equivalent,
unitary, irreducible representations of a compact group G, labeled

MATRIX REPRESENTATION OF
INTERNAL OBSERVABLES

PETER-WEYL THEOREM FOR
COMPACT GROUPS



QUANTIZATION OF LAGRANGIAN SYSTEMS 197

by the parameter s. Let d s  be the dimension of each representation

and D i j

(s)
(g), 1 ≤ i, j   ≤ ds the corresponding matrix elements.

Then, the functions

form a complete orthonormal system on G, with respect to some
normalized invariant measure µN(g)defined on this group, i.e.,

(4.83)

That the set is complete means that every square integrable function
defined on G, f (g), admits a series expansion, convergent in norm, in

terms of the above orthogonal functions Di j
(s)

(g),   in the form

where the coefficients, in general complex numbers ai j
(s)

, are obtained by

In our case S U(2), as a group manifold, is the simply connected three-
dimensional sphere of radius 2π , with the normalized measure as seen
before (4.72),

In the normal parametrization, the two-dimensional representation
of SU (2) corresponds to the eigenvalue s = 1/2 of S 2 and the matrix
representation is given by

i.e.,

If we compare these four matrix components with the four orthogonal
spinors given in (4.70)-(4.71) we see that

(4.84)
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where spinors stand on the first column and  on the second. When
multiplied by they become the normalized spinors (4.76)-(4.79). We
understand why, when considered by columns, the group action (4.43)

transforms the spinors  and  among themselves, separately, according
to the two-dimensional representation of the SU(2) group, D (1/2) (µ).
Operators W±  transform among themselves these matrix components
or spinors, within the same column, while operators  T ± within each row.
The matrix (4.84) can be written in terms of the eigenvectors of the form
|w3 , t 3 >, as

In the three-dimensional representation of SO (3), considered as a rep-
resentation of SU (2)

we get another set of nine orthogonal functions. Multiplied by  they
form another orthonormal set orthogonal to the previous four spinors.
It is a good exercise to check this orthogonality among these functions.
Let |fi  >≡  el i, i = 1,2,3 be the three functions corresponding to the
first column of matrix D(1 (α), | g >≡ ei 2 i to the second and |hi > ≡ e 3 i

to the third, then, explicitly

These nine matrix components are eigenvectors of W 2  with eigenvalue
s = 1, but they are not eigenvectors of either W 3  or T 3  but rather they

Ψ 

Ψ 

)
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are linear combinations of them. Let |yi > be the three spinors obtained
by tensor product of spinors Ψ ⊗ Ψ , where the diferent components Ψm

s 

are given in (4.70). They are explicitly given by

They are eigenvectors of T3 with eigenvalue – 1. Let |vi > be those built
from    ⊗   , where    the  components    are  given  in  (4.71),  and  thus

They are eigenvectors of T 3 with eigenvalue 1, and finally let |w
i
 > be 

those coming from Ψ ⊗

which are eigenvectors of T 3  with eigenvalue 0. Then we get the rela-
tionship

and

If we classify them according to the eigenvalues of the two operators
W 3 and T 3 , | w3 , t 3 >, these nine spinors are respectively
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3.4 
In the case that the zitterbewegung content of the spin is not vanishing

we can also obtain spin 1/2 wave-functions as the irreducible represen-
tations contained in the tensor product of integer and half-integer spin
states coming from the U(u) and V(ρ) part of the general wave function
(4.66).

The total spin operator of the system is of the form

where Y = and W is given in (4.59). Spin projections on the
body axes, i.e., operators T i  = ei   · W, are described in (4.64). They
satisfy the commutation relations

These commutation relations are invariant under the change ρ by –  ρ in
the definition of the operators W and T. The expression of the body
frame unit vectors e

i
is given in (4.61) and (4.62).

We can see that these unit vector components and spin operators Wi

and T j 
satisfy the following properties:

1 )
2)
3)
4) For all i, j, the action Wi ej i = 0, with no addition on index i.
5) For all i ,  j, the action Ti ei j = 0, with no addition on index i.
6) For all i, j, k, with i ≠ j, we have that W i ek j + Wj ek i  = 0, and in

the case that i = j, it leads to property 4.
7) i e j k + T j e k  =  0,   andi

similarly as before in the case i = j it leads to property 4.
This implies that e i  · W = W · e i = T i , because of property 4, since

when acting on an arbitray function ƒ,

because
In the same way

For all i, j, k, with i ≠ j, we have that T

GENERAL SPINORS
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Now we fix the value of spin. Particles of different values of spin can
be described. Let us consider then that elementary particles take the
lowest admissible spin values. For spin 1/2 particles, if we take first
for simplicity eigenfunctions V(ρ) of W

2
 with eigenvalue 1/2, and then

since the total spin has to be 1/2, the orbital Y part can only contribute
with spherical harmonics of value y = 0 and y = 1.

If there is no zitterbewegung spin, y = 0, and Wigner’s functions as
we have seen in Sec. 3.1 can be taken as simultaneous eigenfunctions
of the three commuting W 2 , W3 , and T 3  operators, and the normalized
eigenvectors |w , w 3 , t 3  > are explicitly given by the following functions
in the usual ket notation:

(4.85)

(4.86)

(4.87)

(4.88)

If we have a zitterbewegung spin of value y = 1, then the U ( u )  part
contributes with the spherical harmonics

(4.89)

(4.90)

(4.91)

normalized with respect to the measure

which are the indicated eigenfunctions |y, y 3  > of  Y2  and Y 3 , and where
the variables  and   determine the orientation of the velocity u .

The tensor product representation of the rotation group constructed
from the two irreducible representations 1 associated to the spherical
harmonics (4.89)-(4.91) and 1/2 given in (4.85)-(4.88) is split into the
direct sum 1 ⊗ 1/2 = 3/2 ⊕ 1/2.

The following functions of five variables      α, θ  and φ , where vari-
ables   and   correspond to the ones of the spherical harmonics Yl

m , and
the remaining α , θ and φ , to the previous spinors Φ , are normalized spini

1/2 functions |s, s 3 > that are eigenvectors of total spin S3 , t 2, and S 3
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and T3 operators

(4.92)

(4.93)

(4.94)

(4.95)

such that Ψ 2 = S _ Ψ 1 and similarly  Ψ4 = S _ Ψ 3 , and also that  Ψ 3 =
T_ Ψ1  , and  Ψ4  = T _ Ψ 2 . They are no longer eigenfunctions of the W 3

operator, although they span an invariant vector space for S 2, S 3  and
T3  operators. In the above basis (4.92)-(4.95) formed by orthonormal
vectors  Ψi , the matrix representation of the spin is

while the matrix representation of the Y and W part is

(4.96)

(4.97)

which do not satisfy commutation relations of angular momentum op-
erators because the vector space spanned by the above basis is not an
invariant space for these operators Y and W .

The spin projection of the W part on the body axis, i.e., the T
operator, takes the same form as before (4.81)

(4.98)

because Ψ1 a n d  Ψ2  functions are eigenfunctions of T3  with eigenvalue
1/2, while Ψ3 and  Ψ4 are of eigenvalue –1/2, and thus the spinors Ψi

span an invariant space for S i a n d  T j operators. In fact the basis is
formed by simultaneous eigenfunctions of total spin S2, S 3 and T 3, and
the ket representation is the same as in the case of the Φ given ini

(4.85)-(4.88).
The expression in this basis of the components of the unit vectors e

i 
are represented by

(4.99)
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Then if we compute the projection of spin in some body axis ei ,

and similarly Y · e i = M i , they are given by

(4.100)
and

(4.101)

4. RELATIVISTIC PARTICLES
We can similarly quantize classical relativistic particles. We shall start

again by considering the relativistic point particle to focus attention,
in detail, on the kinematical space of particles traveling at the speed
of light. We shall obtain the quantum mechanical description of the
electron and its associated Dirac equation, considered as a one-particle
wave equation, and showing the interpretation of its internal observables,
that span Dirac’s algebra. We shall also consider the quantization of the
photon, obtaining the usual wave equation with two possible polarization
states. Finally tachyons are quantized on the same footing showing the
impossibility of having spin 1/2 tachyons.

4.1 RELATIVISTIC POINT PARTICLE
Kinematical variables of the point particle are position and time as

in the nonrelativistic case. They transform under the Poincaré group
as described in (3.33)-(3.34). Gauge functions for the Poincaré group
are only trivial. Then wave functions are complex functions Φ(t, r) a n d
therefore the representation of the ten generators when acting on these
functions is

(4.102)

(4.103)

The two Casimir operators are P  P  = m 2c 2 and the square of the Pauli-
Lubanski four-vector w given in (3.14), which vanishes identically. The

µ
µ

µ



(4.104)

or

We can also find simultaneous eigenfunctions of the above Klein-Gordon
operator, energy operator, HΦ ( t,r) = E Φ ( t,r) and linear momentum,
P Φ ( t, r ) = p Φ ( t, r) so that there exist solutions in the form of plane
waves e i (Et – p · r)/ ,  with the condition E² /c ² – p ² = m ² c ² , and where
the energy can be either positive or negative.

No spin operator can be defined for this system and as in the classical
case the quantum mechanical point particle is a spinless particle.

In the case of interaction with an external electromagnetic field, the
Poincaré invariant equation (4.104) is satisfied in the classical case (see
(3.216)) by the mechanical parts Hm  = H – e φ  and P m  = P – eA, and
therefore the wave equation for a point particle is

(4.105)

where

Quantization of the general relativistic particle will be done in the
same way. In this case we have to distinguish the three maximal ho-
mogeneous spaces of the Poincaré group which give rise respectively to
Bradyons, Luxons and Tachyons. We shall sketch now briefly the corre-
sponding method for Bradyons and we shall devote the next section to
the case of Luxons.

The ten kinematical variables transform under P according to

4.2 GENERAL RELATIVISTIC SPINNING
PARTICLE
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first invariant defines the mass of the system and every wave function
must satisfy the Klein-Gordon equation

(4.106)

(4.107)

(4.108)

(4.109)
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where the functions F and G are given in (3.9) and (3.10), respectively.
The wave function of the system is a function Φ (t, r, u, ρρ) of these kine-
matical variables. The ten group generators are expressed as

(4.110)

where D written in terms of U and W is given in (3.76), and U = – i  ∇ u

and W takes the form (4.59). The total angular momentum is again

(4.111)

We have as before

but
can

now the wave function, that depends on more variables in this case,
be separated in the form

(4.112)

By applying the Klein-Gordon operator to this expansion we find that
each space-time function ψi (t, r ), irrespective of the accompanying func-
tion χ i (u, ρ ρ s a t i s f i es

(4.113)

The other functions  χ i  (u, ρρ) are chosen as eigenfunctions of the angular
momentum operators. These operators produce derivatives with respect
to these additional variables u and ρ ρ and therefore, commute with the
Klein-Gordon operator. This is what justifies the above decomposition
(4.112). We delay the analysis of these functions χ i (u, ρρ ), until the next
section where we shall describe spin 1/2 particles.

Let us consider the classical kinematical momentum in explicit form

If we take the time derivative of the above expression we get a Poincaré
invariant relation

It shows a linear relationship between the energy H and linear momen-
tum P. Taking the scalar product with the velocity, it yields

(4.114)

),
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Now, in the quantum case, if we apply this operator to any wave function
Φ ( t, r, u, ρρ ), operators H and P are expressed as the usual differential
operators given in (4.110). What we need is to obtain the quantum
mechanical representatives of the remaning observables like u, u² a n d
dD/dt. These will act, in general, on the functions χ i  that depend on
variables u and ρ, ρ, so that each ψ  i in addition to satisfying the Klein-
Gordon equation (4.113), will satisfy a first order differential equation
on time and position, in which the different  ψ i will be linearly coupled
because of the action of the mentioned operators on the χ  i part  of  the
expansion.

If it happens that u = c we see that the first two terms of expression
(4.114) look quite similar to the corresponding ones of Dirac’s Hamilto-
nian, but in the case of Luxons we have to replace operator D by the
corresponding Z = u × U + W observable. We shall show that in the
case of Luxons, quantization of the model gives rise to Dirac’s equation.
This is what is done in the next Section.

4 . 3 DIRAC’S EQUATION
For Luxons we have the nine-dimensional homogeneous space of the

Poincaré group, spanned by the ten variables (t, r, u, αα  ) similarly as
before, but now u is restricted to u = c. For this system, since u ·   =  0
a n d    ≠ 0, we are describing particles with a circular internal orbital
motion at the constant speed c, like the ones described in Section 4.2 of
Chapter 3.

In the center of mass frame, (see Fig.4.1) the center of charge describes
a circle of radius R0  = S /mc at the constant speed c, the spin being
orthogonal to the charge trajectory plane and a constant of the motion
in this frame.

The kinematical variables transform under P according to

(4.115)

(4.116)

(4.117)

(4.118)

where the functions Fc  and G c  are given in (3.132) and (3.133), respec-
tively. When quantized, the wave function of the system is a function

 Φ ( t, r, u, ρρ ) of these kinematical variables. For the Poincaré group all
exponents and thus all gauge functions on homogeneous spaces are equiv-
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alent to zero, and the Lagrangians for free particles can thus be taken
strictly invariant. Projective representations reduce to true representa-
tions so that the ten generators on the Hilbert space, taking into account
(4.115)-(4.118) and (4.15) are given by:

(4.119)

(4.120)

where the angular momentum operator Z is the differential operator

(4.121)

and where the differential operators ∇  u  a n d  ∇ ρ are the corresponding
gradient operators with respect to the u and ρ ρ variables as in the Galilei
case. As we shall see later, operator Z is not a constant of the motion
even for the free particle, but it is the equivalent to Dirac’s spin operator.

To obtain the complete commuting set of observables we start with
the Casimir invariant operator, or Klein-Gordon operator

(4.122)

In the above representation, H and P only differentiate the wave func-
tion with respect to time t and position r, respectively. Since the spin
operator Z operates only on the velocity and orientation variables, it
commutes with the Klein-Gordon operator (4.122). Thus, we can find

Figure 4.1.  Motion of charge in the C.M. frame.
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simultaneous  eigenfunctions  of  (4.122),  Z ²,  and  Z3 .  This  allows  us  to  try
solutions  in  separate  variables  so  that  the  wave  function  can  be written

(4.123)

where  ψ i (t, r)  are  the  space-time  components  and  the  χ i (u, ρρ)  represent
the  internal  spin  structure.  Consequently

(4.124)

i.e.,  space-time  components  satisfy  the  Klein-Gordon  equation,  while  the
internal  structure  part  satisfies

(4.125)

(4.126)

Eigenfunctions  of the above type have been found in Section 3., in par-
ticular we are interested in solutions that give rise to spin 1/2 particles.

For spin 1/2 particles, if we take first for simplicity eigenfunctions
χ ( ρ )  o f  Z ² with eigenvalue 1/2, then since the total spin has to be 1/2,
the orbital zitterbewegung part Y = u × U can only contribute with
spherical harmonics of value y = 0 and y = 1.

For y = 0, the spin 1/2 functions χ i ( ρρ) are linear combinations of
the four Φ functions (4.85)-(4.88) and in the case y = 1 they are linear
combinations of the four Ψ i  of (4.92)-(4.95), such that the factor function
in front of the spherical harmonics is 1 because for this model u = c is a
constant. It turns out that the Hilbert space that describes the internal
structure of this particle is isomorphic to the four-dimensional Hilbert
space 4.

If we have two arbitrary directions in space characterized by the unit
vectors u and v respectively, and Su  and Sv  are the corresponding
spin projections Su  = u · S and Sv  = v ·  S, then S –u = – Su , and
[ Su , Sv ] = i S u × v  . In the case of the anomalous commutation relations
of operators Ti , we have for instance for the spin projections [ T1 , T 2 ] =
– i T3 , suggesting that e1 × e 2  = – e3  and thus e i  vectors linked to the
body behave in the quantum case as a left-handed system. In this case
e i  vectors are not arbitrary vectors in space, but rather vectors linked to
the rotating body and thus they are not compatible observables, in the
sense that any measurement to determine, say the components of ei , will
produce some interaction with the body that will mask the measurement
of the others. We shall use this interpretation of a left-handed system
later.
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Operators S i and Ti have the matrix representation obtained before
which is just

(4.127)

(4.128)

where we represent by σ Pauli matrices and is the 2 × 2 unit matrix.
Similarly, the matrix elements of the nine components of the unit

vectors( e  i  ) j  , i, j = 1, 2, 3 give rise to the two alternative sets of rep-
resentations depending on whether the zitterbewegung contribution is
y = 0 or y = 1. In the first case we get

(4.129)

while in the y = 1 case the representation is

(4.130)
It must be remarked that the components of the observables ei are not
compatible in general, because they are represented by non-commuting
operators.

We finally write the wave function for spin 1/2 particles in the follow-
ing form:

(4.131)

for y = 0 or in the case y = 1 by

(4.132)

Then, once the Φ functions that describe the internal structurei or Ψ j

are identified with the four orthogonal unit vectors of the internal Hilbert
space the wave function becomes a four-component space-time wave
function, and the six spin components Si and T j and the nine vector
components (e i ) j , together the 4 × 4 unit matrix, completely exhaust
the 16 linearly independent 4 × 4 hermitian matrices. They form a vector
basis of Dirac’s algebra, such that any other translation invariant internal
observable that describes internal structure, for instance internal velocity
and acceleration, angular velocity, etc., must necessarily be expressed as
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a real linear combination of the mentioned 16 hermitian matrices. We
shall see in Sec. 4.4 that the internal orientation completely characterizes
its internal structure.

From now on we shall represent by S the spin operator S = u ×  U +W
which, as seen in (4.96) and (4.127), coincides with the usual matrix
representation of Dirac’s spin operator.

If we consider the expression of the kinematical momentum for u = c
particles

and we take the time derivative of this expression followed by the scalar
product with u, it leads to the Poincaré invariant operator (Dirac’s
operator):

(4.133)

where we have used the fact that S is not in general a constant observ-
able.

When Dirac’s operator D acts on a general wave function, we know
that H and P have the differential representation given by (4.44) and
the spin the differential representation (4.59), or the equivalent matrix
representation (4.127), but we do not know how to represent the action
of the velocity u and the (du/dt ) × u observable. However, we know
that for this particle u and du/dt are orthogonal vectors and together
with vector u × du/dt they form an orthogonal right-handed system,
and in the center of mass frame the particle describes a circle of radius
R 0 = /2mc for spin 1/2 particles in the plane spanned by u and du/dt
(see Fig.4.1).

Let us consider first the case y = 0, where the zitterbewegung part
does not contribute to the total spin. Since u and du/dt are translation
invariant observables they will be elements of Dirac’s algebra, and it
turns out that we can relate these three vectors with the orthogonal
left-handed system formed by vectors e1 , e2 and e3 with representation
(4.129). Then, as shown in part (a) of Figure 4.2, we have u = ae1

and du/dt × u = be3, where a and b are constant positive real numbers.
Then the third term in Dirac’s operator is – (b /c2)e 3 · S = – ( b/c2 )T ,3

and (4.133) operator becomes

(4.134)

If we make the identification with the orthonormal system of part (b)
of Figure 4.2, the relation of the above observables is opposite to the
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previous one but now with the coefficients –a and –b, respectively, i.e.,
we get

(4.135)

Figure 4.2. Orientation in the Pauli-Dirac representation.

Multiplying (4.135) by (4.134) we obtain

(4.136)

which is an algebraic relation between H 2 and P 2 , and identification of
this expression with the Klein-Gordon operator (4.122) leads to a = 3c
and b = 2mc4 / =  c 3 / R0 and we obtain Dirac’s operator:

(4.137)

(4.138)

(4.139)

where Dirac’s matrices α and β are represented by

and thus Dirac’s gamma matrices are

i.e., Pauli-Dirac representation, where 3e1 plays the role of a unit vector
in the direction of the velocity.
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This representation is compatible with vector du/dt lying along the
third vector e 2 . In fact, in the center of mass frame and in the Heisenberg
representation, Dirac’s Hamiltonian reduces to H = βm c2 , and the time
derivative of any observable A is obtained as

such that for the velocity operator u = cα ,

(4.140)

(4.141)

c2 / R0 being the constant modulus of the acceleration in this frame, and
where 3e 2 plays the role of a unit vector along that direction.

The time derivative of this Cartesian system is

(4.142)

(4.143)

(4.144)

since e3 is orthogonal to the trajectory plane and does not change, and
where c / R0 = ω is the angular velocity of the internal orbital motion.
This time evolution of the observables e i is the correct one if assumed to
be a rotating left-handed system of vectors as shown in Figure 4.2-(a).

In general

is not a constant of the motion, but for the center of mass observer, this
spin operator u × U + W reduces to the equivalent of the classical spin
of the particle S and is constant in this frame:

(4.145)

Only the T3 spin component on the body axis remains constant while
the other two T1 and T2 change because of the rotation of the corre-
sponding axis,

(4.146)

(4.147)

(4.148)
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When analyzed from the point of view of an arbitrary observer, the
classical motion is a helix of elliptic cross section and the acceleration
is not of constant modulus c2 / R0 , and the spin operator S is no longer
a constant of the motion, because it is the total angular momentum
J = r × P + S that is conserved.

Identification of the internal variables with different real linear combi-
nations of the e i matrices lead to different equivalent representations of
Dirac’s matrices, and thus to different expressions of Dirac’s equation.

Figure 4.3. Orientation in the Weyl representation.

For instance if we make the identification suggested by Figure 4.3,
u = – a e3 and the observable du/dt × u = b e1  with positive constants
a and b, we obtain by the same method

and thus gamma matrices

(4.149)

(4.150)

i.e., Weyl’s representation.
When we compare both representations, we see that Weyl’s represen-

tation is obtained from Pauli-Dirac representation if we rotate the body
frame π /2 around e2 axis. Then the corresponding rotation operator
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We can check that R γ µ
PD R † = γ µ

W , where γ µ
PD and γ µ

W are gamma
matrices in the Pauli-Dirac and Weyl representation, respectively.

We can similarly obtain Dirac’s equation in the case of zitterbewegung
y = 1, by using the set of matrices (4.130) instead of (4.129), because
they are multiples of each other and only some intermediate constant
factor will change.

Figure 4.4. Space reversal of the electron is equivalent to a rotation of value π along
S .

In Figure 4.4 we represent the parity reversal of the plausible descrip-
tion of the electron as given by this model of luxon which is circling
around the center of mass at the velocity c and that under and in the
center of mass frame it changes according to

In the Pauli-Dirac representation as we see in Figure 4.2, this amounts
to a rotation of value π around axis e3 and thus

which is one of the possible representations of the parity operator ± γ0

o r ±i γ0. In Weyl’s representation this is a rotation of value π around e
which gives again

1

≡ i γ0 .

Figure 4.5. Time reversal of the electron produces a particle of negative energy.
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In Figure 4.5 we represent its time reversal also in the center of mass
frame

but this corresponds to a particle of negative energy, and thus m < 0,
such that the relative orientation of spin, velocity and position, given by
equation (3.168) agrees with the motion depicted in this figure.

4.4 DIRAC’S ALGEBRA
The three spatial spin components Si , the three spin projections on

the body frame Tj and the nine components of the body frame (e i ) j ,
i , j = 1,2,3, whose matrix representations are given in the y = 0 case in
(4.129) or in (4.130) in the y = 1 case, together with the 4 × 4 unit matrix

form a set of 16 linearly independent hermitian matrices. They are
a linear basis of Dirac’s algebra, and satisfy the following commutation
relations:

(4.151)

(4.152)

(4.153)

and the scaled 3e i vectors in the y = 0 case

showing that the e i operators transform like vectors under rotations but
they are not commuting observables. In the case y = 1, the scaled –9e i ,
satisfy the same relations.

If we fix the pair of indexes i, and j, then the set of four operators
S 2 , S i , T j and (e j ) i form a complete commuting set. In fact, the wave
functions Φ i , i = 1,. . . , 4, given before (4.76)-(4.79), are simultaneous
eigenfunctions of S 2 , S3 , T3 and (e3 ) 3 with eigenvalues s = 1/2 and for
s 3 , t3 , and e 33 are the following ones:

(4.154)

(4.155)

(4.156)

(4.157)

and similarly for the Ψ j spinors of (4.92)-(4.95)
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The basic observables satisfy the following anticommutation relations:

(4.158)

(4.159)

(4.160)

(4.161)

(4.162)

If we define the dimensionless normalized matrices:

together with the 4 × 4 unit matrix they form a set of 16 matrices Γλ ,
λ =1,..., 16 that are hermitian, unitary, linearly independent and of
unit determinant. They are the orthonormal basis of the corresponding
Dirac’s Clifford algebra.

The set of 64 unitary matrices of determinant
1 , . . . ,16 form a finite subgroup of SU (4). Its composition law can be
obtained from:

(4.163)

(4.164)

(4.165)

(4.166)

(4.167)

(4.168)

(4.169)

(4.170)

and similarly we can use these expressions to derive the commutation
and anticommutation relations (4.151-4.161).

Dirac’s algebra is generated by the four Dirac gamma matrices γµ ,
µ = 0,1,2,3 that satisfy the anticommutation relations

(4.171)

being Minkowski’s metric tensor.
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Similarly it can be generated by the following four observables, for
instance: S 1 , S 2 , T1 and T2 . In fact by (4.167) and (4.170) we obtain S3

and T 3 respectively and by (4.168), the remaining elements.
Classically, the internal orientation of an electron is characterized by

the knowledge of the components of the body frame (e i ) j , i,j = 1,2,3
that altogether constitute an orthogonal matrix. To completely charac-
terize in a unique way this orthogonal matrix we need at least four of
these components. In the quantum version, the knowledge of four (e i) j

matrices and by making use of (4.163)-(4.170), allows us to recover the
remaining elements of the complete Dirac algebra. It is in this sense
that internal orientation of the electron completely characterizes its in-
ternal structure. Dirac’s algebra of translation invariant observables of
the electron can be generated by the orientation operators.

4.5 PHOTON QUANTIZATION
The kinematical space of the photon is the seven-dimensional manifold

spanned by the variables (t , r , p), with the constraint u = c, so that
the wave function of the photon will be a squared integrable function
Φ ( t, r , p). On this manifold, the generators of the Poincare' group will
be expressed as:

where the spin operator S is given as in the case of the electron by
(4.59). The two functionally invariant operators in this realization are:

and because the photon is a massless particle of spin 1, when acting on
the wave function they satisfy,

(4.172)

(4.173)

where is the second-order d’Alambertian operator. We can try solu-
tions in separate variables in the form in
such a way that

(4.174)

(4.175)

The space-time part satisfies the Klein-Gordon equation without the
rnas term, and the angular part is a function of spin 1, depending



218 KINEMATICAL THEORY OF SPINNING PARTICLES

only on the orientation variables. According to the Peter-Weyl theorem
mentioned before, l 3 the most general sp in 1 function will be a linear
combination of the nine spin 1 spinors, corresponding to the nine matrix
components of the 3 × 3 representation of SU(2).

These nine functions are classified in the ket notation | s3 , t 3 >, ac-
cording to the eigenvalues of the spin operators S3 and T 3 = S . e3 , for
all combinations of their eigenvalues s in –1,0,l. Vector e3 and t3 3 is
one of the unit vectors linked to the particle to describe its orientation.
However since the photon spin is not transversal, if we choose the labo-
ratory axis OZ, along the photon trajectory, and also the unit vector e3

along that direction, then, only wave functions with the third spin com-
ponent S3 = T3 = ±l contribute, and therefore we are left with only two

spinors, They are given

up to a normalization factor by re-
spectively, in terms of the Φ i described in (4.76)-(4.79).If we choose e3

in the opposite direction, then S3 and T3 have opposite eigenvalues and
consequently only spinors contribute
to the wave function.

If the state of the photon is of energy and linear momentum k ,
then the most general function will be of the form

where the two complex numbers α and β represent the corresponding
linear combination of the two basic states

of helicity +l and –1 respectively. Pure photon states of energy span
a two-dimensional Hilbert space, such that the corresponding mixture
of states gives rise to the so-called Poincaré sphere.

In this representation, the spin operators are represented by

4.6 QUANTIZATION OF TACHYONS
The kinematical space of the general tachyon is the seven-dimensional

manifold spanned by the variables (t, r, u), without orientation variables,
and with the constraint u > c, so that the wave function of a tachyon
will be a squared integrable function φ( t , r , u ). The generators of the
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Poincaré group will be expressed as:

where the spin operator Z takes the form

and U = – i ∇ u . Eigenvalues of Z2 are spherical harmonics Y l
m  ( θ , φ  )

on the unit sphere, and therefore integer spin wave functions. Spin 1/2
particles can never have an internal tachyonic zitterbewegung. The re-
maining analysis is equivalent to the quantization of the previous models.
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Chapter 5

OTHER SPINNING PARTICLE
MODELS

These models can be classified in many ways. We have collected them
in two main sections according to the structure of their kinematical

a certain group theoretical framework, while the other is restricted to
phenomenological models or models which are defined without reference
to any invariance principle, although their dynamics are subsequently
restricted to fulfill the special relativity principle.

statements. One set is formed by those models whose kinematics has

1 . GROUP THEORETICAL MODELS

1.1 HANSON AND REGGE SPINNING TOP
The starting point is similar to the one we considered in Chapter 3

as a relativistic Bradyon. 1 At every instant of some arbitrary evolution
parameter , the particle is characterized by an element of the Poincaré
group They are called ‘Lagrangian coordinates’
of the system to the space-time position , and a tetrad or Lorentz
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In this chapter we shall review other models of classical elemen-
tary spinning particles, either relativistic or non-relativistic, that can
be found in the literature. We shall discuss them in connection with
the formalism we have developed in previous chapters to show the scope
of the different proposals. Details of the different models are briefly
sketched, paying attention mainly to the dynamical equations and the
spin and dipole structure they provide. Whenever a Lagrangian is sup-
plied we discuss the interaction terms, and in general, we have tried to
write the different variables and observables with the same notation as
in our treatment. For a more thorough analysis of these models the
reader is referred to the original publications.
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matrix , which, at any instant , satisfies the usual relation

where η µ σ is Minkowski’s metric tensor. They state that these variables
do not represent the independent degrees of freedom. Nevertheless, they
consider that in Λµ

v there are spurious degrees of freedom so that some
constraints will be established later in order that the only relevant inde-
pendent variables will be rotation variables. We understand that these
Lagrangian coordinates are  the equivalent to the kinematical variables of
our formalism, with some final constraints to eliminate the undesirable
variables.

Since

the antisymmetric quantities

are the relativistic generalization of the three-dimensional angular veloc-
ity. However, the Ωµv 

variables depend, by construction, on the velocity
and orientation variables and also on the angular velocity and acceler-
ation. It is claimed that this dependence on the acceleration will be
suppressed later.

Then the basic statement is that the general free Lagrangian for de-
scribing a relativistic top will be an explicit function of the four-velocity
u µ ≡  µ and of this generalized angular velocityΩ µv 

, bu t i ndependen t o f
x µ and Λ µv .  There are some additional constraints to be defined prop-
erly, so that in addition to the four-velocity, the only relevant variables
will be the angular variables and angular velocity. To establish a proper
dynamical system of only six degrees of freedom, three for the position
of a point, and the other three for some suitable angular variables to
describe its orientation in space, we see that we need severe constraints
to destroy the dependence on the acceleration variables. In the non-
relativistic case this is simpler, as the example of the rigid body shows,
but in the relativistic case the Lorentz boosts do not form a subgroup
of the Poincaré group and the task is more difficult. Once acceleration
variables are eliminated, the spin part of the system will not show zit-
terbewegung and therefore the dipole properties related to it have to be
introduced in some ad hoc manner.

With these magnitudes the following four independent Poincaré in-
variant quantities can be formed:
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and

where

is the dual tensor with  ∈ 0123 = +1, so that the free Lagrangian will be
an explicit function of only these invariants L0 (a1,a2,a3 ,a4 ).

Invariants a1 and a2 are homogeneous functions of second order in the
derivatives of the Lagrangian coordinates while a3 a n d  a 4 are of fourth
order. An additional requirement to ensure the arbitrary nature of the
evolution parameter is that L0will be a homogeneous function of first
order in these derivatives and thus Euler’s theorem on homogeneous
functions implies that

(5.1)

where each Let us call  v i  the derivatives of the Lagrangian
coordinates. Then while for a

1
and a2, v i  ∂   a1 / ∂vi = 2a 1 

holds and similarly for a 3  and a4 and we get the above
result (5.1).

The canonical conjugate momenta of the Lagrangian coordinates (not
of the independent degrees of freedom) are defined as

Since it is assumed that L0 does not depend explicitly on x and Λ v ,
then, before using any constraint, the following equations are considered
as the dynamical equations of the system:

(5.2)
(5.3)

Equation (5.2) is the energy-momentum conservation and equation (5.3)
is the relativistic generalization of the three-dimensional dynamical equa-
tion  d W/dt = ω ω × W, with W = ∂ L / ∂ ω , because also in this case all
the dependence on the orientation  variables is through the variables Ω v .
Because the tensor S  v is antisymmetric we have in (5.2-5.3) a set of ten
independent dynamical equations.

It is not straightforward, but after using some tensor identities, this
last equation can be rewritten as

(5. 4)

µ µµ

µ

µ
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Therefore the following magnitudes are constants of the motion

(5.5)

(5.6)

and will be identified with the generators of the Poincaré group.
In addition to the above equations, and in order to restrict the inde-

pendent degrees of freedom, it is assumed that the orthogonality between
the spin and linear momentum holds, i.e.,

(5 .7)

These represent four conditions and it turns out that, of the above dy-
namical equations (5.2) and (5.4), only six are really independent, thus
justifying in this way that the system has six degrees of freedom. There
are three ‘angular’ variables which in addition to the spatial variables r,
characterize this spinning object. This condition (5.7) is usually known
as the magnetic condition because in the center of mass frame it im-
plies that components S 0 i = 0 and therefore, for the particle at rest, no
electric dipole term should appear.

However equation (5.4) is not correct because the invariant magni-
tudes ai , i = 2, 3, 4, also depend on The Lagrangian depends on
second-order derivatives and thus the right definition of the conserved
four-momentum is

(5.8)

It is not clear how the four equations (5.7) are equivalent to withdrawing
the dependence on

The last equation (5.6) can identified with equation (3.90) that defines
the constant J µ v as in Chapter 3. But remember that the P µ in the case
of Bradyons is defined according to (5.8).

Through a rather lengthy calculation, which is out of the scope of
the analysis we want to present here, the authors show that the free
Lagrangian can be cast into the reduced form

Here To reach this conclusion, the
previous constraints and the conjecture that the possible invariants of
the system, mass m and spin S, will satisfy what is known as a Regge
trajectory, is used. Therefore, there must exist a functional relationship
of the form m2 – f ( S 2 ) = 0.
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Further analysis for  L , in the case a3 = a = 0, leads to the form4

where the two invariant parameters m and S are separately fixed.
Because

where α and ω are the variables defined in (3.63) and (3.64) respectively,
this leads to the Lagrangian

This looks like the bradyonic Lagrangian equivalent to the non-relativistic
one (2.139) after some constraints are used to withdraw the dependence
on the acceleration variables contained in the variables α and ω . The
zitterbewegung in our model corresponds to circular motions in the cen-
ter of mass frame. When parameter S = 0 the usual point particle
Lagrangian is obtained.

Interaction with an external electromagnetic field is introduced by
assuming a minimal coupling of the usual form

where e represents the charge of the particle and A µ (x ) the external
potentials. The magnetic moment of the spinning top is introduced by
assuming a new coupling term in the Lagrangian of the form

where parameter g represents the intensity of the dipole of the system.
It is clear that this coupling is the coupling of an object with an anoma-
lous dipole structure of value

1.2 KIRILLOV-KOSTANT-SOURIAU MODEL
To our knowledge, Bacry 2 was the first to consider the phase space of

a dynamical system as a homogeneous space of the kinematical group. In
this way he translated Wigner’s irreducibility condition on Hilbert space
into the homogeneity of the phase space manifold. The model we present
here should also be called the Bacry model, but the considerations that
follows were generalized by Kirillov, Kostant and Souriau giving rise to
the so-called KKS theorem.

There is a theorem due to Lie 3 which states that in a canonical
realization of a group on a manifold of dimension 2n, with generators
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X α ,  α = 1,. . ., r, it is always possible to choose the generating functions
in the following way: 2h functions Qi (X α ), Pi (X α ), i = 1,. . . , h, α =
1, . .  .   ,r and another k = r – 2h functions, I Xj ( α ), j = 1,. . . , k such that
they satisfy the Poisson brackets

(5.9)

(5.10)

The theorem is based on the idea that when we have a symmetry
group the generating functions in the group realization satisfy

where are the structure constants of the group and the d αβ are
constant real numbers that in general cannot be eliminated by redefining
the Xα generators and are related to the existence of nontrivial central
extensions of the group, or in an equivalent way to the existence of
nontrivial exponents of the group. Then any two functions of the X α , 
F ( X α ) and G (Xβ) satisfy

By considering that the right-hand side takes the form stated in (5.9-
5.10) we get a system of partial differential equations for the unknown
functions F and G, of which we choose particular solutions that fulfill
the above requirement. If the group has k functionally independent in-
variants, then we can obtain up to k independent functions of the I j type
and the remaining solutions can be grouped in terms of pairs of canoni-
cal conjugate variables, because the difference between the dimension of
the group and the number of independent invariants, r – k, is an even
number.

In this way the set of generating functions is decomposed into h pairs
of canonical conjugate variables Qi , Pi and another set of r – 2h invariant
functions I j .

As an example, let us consider the rotation group with the three generators
Ji that in a canonical realization satisfy

Since this group has only one Casimir operator, it is possible to transform the
above relations in terms of three new functions Q = arctan  (J2 / J

=
1 ), P = J 3 ,

I = J 2 such that the new generating  functions satisfy
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In this example Q is precisely the angle that the projection of angular momen-
tum on the plane XOY forms with the OX axis and its canonical conjugate
momentum is P, i.e., the component of the angular momentum perpendicular
to this plane. The invariant I is the Casimir operator of the group.

When restricted to the Galilei group the generating functions satisfy
the commutation relations of a central extension of G, which is an 11-
parameter group with three functionally independent invariants, and
therefore we get four pairs of conjugate generating functions. In the
Poincaré case it is a ten-parameter group with two independent Casimir
invariants and we similarly get an underlying eight-dimensional phase
space.

For the Galilei group all the dαβ coefficients can be absorbed, except
the ones that arise in the Poisson brackets of the K i and Pj which
becomes

In this realization we can go from the set of 11 generators
Jj , j = 1, 2, 3 and I, that represents the unit function, to another set
with three generating functions that commute with the others and the
remaining can be grouped in a set of four pairs of conjugate variables.
If we define the functions

they satisfy

We thus have that the three invariant functions are I1 = I, the constant
unit function, I2 = S 2 , the absolute value of spin and I3 = H – P 2 /2m,
the internal energy. The four pairs of conjugate variables are

In the Poincaré case all dαβ coefficients vanish and therefore the two
invariant functions can be chosen as

with P µ   ≡ ( H/c, P ) and Pauli-Lubanski four-vector is

The spin observable is defined through
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and the set of four conjugate variables are

Bacry thus arrives at the conclusion that the most general elementary
particle either relativistic or non-relativistic, is a system of four degrees
of freedom. Three represent the position of the particle, the linear mo-
mentum being their conjugate variables, and the fourth is an angle α
whose conjugate momentum is a spin component Sα such that the Carte-
sian spin components are expressed in terms of these two variables and
of an invariant value S, the absolute value of the spin, in the form:

This result was generalized independently by Kirillov, Kostant and
Souriau and is known as the KKS theorem. They show that the coadjoint
action of any Lie group defines on its orbits a symplectic structure. 4

But the phase space, although interpreted as the state space of clas-
sical mechanics, does not play the same role as the Hilbert space in
quantum mechanics, at least as far as the dynamics is concerned. In
quantum mechanics the dynamics is stated in terms of initial > and
final > states, such that the probability amplitude for the dynamical
process > is given by the corresponding matrix element of
the scattering operator < >. But both > and > are
elements of the same Hilbert space that, at the same time it plays the
role of the space that describes all the particle states, it also represents
the kinematical space where the dynamics is running. However, if we fix
a point in phase space, the dynamics is completely determined. There
is one and only one trajectory passing through that point and therefore
phase space can no longer describe a two-end point dynamics, showing a
clear difference with the quantum statements. This is one of the reasons
why we believe that it is the kinematical space, rather than phase space,
that has to be a homogeneous space of the kinematical group in order
to have a dynamical formalism closer to the quantum one.

1.3 BILOCAL MODEL
We have described in previous chapters elementary spinning particles

with magnetic moment. It has been shown that this property is directly
related to the zitterbewegung and therefore to the existence of a sepa-
ration between the center of mass and center of charge. We can try to
describe this feature by describing the particle as a dynamical system
characterized by two different points. One is the center of mass q and
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the other the relative position k of the charge with respect to the center
of mass. These kind of systems can be called bilocal systems. We are
going to produce an equivalent Lagrangian description of a particular
model of a nonrelativistic spinning particle, but considered as a bilocal
system.

Let us consider, for instance, the simple nonrelativistic model of par-
ticle with zitterbewegung but no rotation. One free Lagrangian is, for
instance,

(5.11)

After the definition q = r – k, with mk ≡ we arrive at the
second-order dynamical equations for these variables:

In the case of a minimal coupling with r
replaced by q + k, the dynamical equations become

(5.12)

where the external Lorentz force F = e(E + u × B ) is defined at point
r. Now the question is: Is it possible to obtain a Lagrangian description
in terms of two position vectors, that gives rise to the above dynamical
equations (5.12), while preserving the definition of elementary particle?

We can see that the Lagrangian L = L 0 + L I with

(5.13)

and
(5.14)

does. This is a regular first order Lagrangian with kinematical variables
( t, q, k) which transform under the Galilei group in the form

(5.15)

Variable k is invariant under translation and Galilei boosts, as corre-
sponds to a  relative position vector.Their derivatives   transform     as 
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Nevertheless, if these variables represent the kinematical variables of a
classical elementary particle, according to our general definition they
have to belong to a homogeneous space of G. Since k transforms under
G as in (5.15), we shall need to restrict variable k to have a constant
magnitude R. This implies that, to be consistent with the consideration
of our system as an elementary particle, we shall restrict ourselves to
internal circular motions. This amounts to the internal motion being of
constant radius and therefore at a velocity of constant magnitude in the
center of mass frame.

The first term of Lagrangian (5.13) is not invariant under G but has
a gauge function

that depends on parameter m which is considered as the mass of the
system.

The free Lagrangian can be written as

where

The Noether constants of the motion for the free particle are now

We therefore see that the following observables

and
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are the same as in the previous exposition of Chapter 2. Nevertheless,
the constraint k = R has also to be suplemented by the constraint that
the zitterbewegung velocity takes a constant value. We shall consider
that this value is = c. Here parameter c plays no role of a limit
velocity but only means that the velocity of internal zitterbewegung is
of constant value, which agrees with the considered relativistic model
of the electron. This constraint also fixes the value of the parameter
ω = c/R.

To solve the corresponding variational problem we have to consider
those constraints which are written in the first-order homogeneous form:

(5.16)

where λ 1 and λ 2 are the two Lagrange multipliers. With these two
new terms the free dynamical equations for q are unchanged and for k
variables they become

(5.17)

Total energy is a constant of the motion and is given by

By using the two constraints  = 0, i = 1, 2, it reduces to

This implies that λ 2 has to be a constant and if we consider that the
internal energy reduces to m c2, then λ 2 = m. With this condition, if
dynamical equations (5.17) remain the same as the original ones, because
a circular motion of angular frequency ω is but a particular case of an
isotropic harmonic motion, then it necessarily implies that λ1 is also
a constant of value λ 1 = – mω2 .  Finally, the spin of the system is
S = mcR. Therefore, the free particle is characterized by the three
parameters m, S and c, mass, spin and internal zitterbewegung velocity
or internal energy m c2, respectively.

If we compare Lagrangian (5.13) with the trivial expansion of La-
grangian (5.11), after the replacement of and the definition of

the final Lagrangian is

(5.18)
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The difference with L 0 is the addition of the last term and that the sec-
ond and the third term have opposite sign. But, if we add L0 and the
constraints LC with the accepted values for Lagrange’s multipliers, we
obtain in fact L1 without the additional last term.

2 . NON-GROUP BASED MODELS
There are basically two kind of models. One kind tries to justify a

spin dynamical equation of the form

similar to the one Dirac’s spin operator satisfies. Others establish a
torque-like dynamical equation for spin, which is a constant of the mo-
tion for the free particle.

2.1 SPHERICALLY SYMMETRIC RIGID
BODY

This is perhaps the first model created to incorporate the idea of
rotation to the point particle. It was considered as the natural model
in the Uhlenbeck and Goudsmit proposal of the spinning electron. 5

Because of its simplicity there is a huge literature that describes many
applications using this model, such that a comprehensive description
of the references is out of the scope of this book. Let us mention the
widely known book by Rohrlich 6 where many references to this subject
can be found. To mention the present interest in this model, it has
been recently used by Kiessling 7 to show that, by assuming a Lorentz
force interaction, the energy, linear and angular momentum are jointly
conserved if and only if spin is associated to the point particle, in the
form, at least, of rotation of a stiff matter distribution.

It consists of a rigid sphere of mass m, charge e and radius R rotating
with certain angular velocity ω such that this rotation gives account
of the spin. The spin is of the form S = Iω, where I is the moment
of inertia that is defined provided a suitable mass density distribution
is assumed. There are models where the mass density is uniform and
others in which some form factor is introduced. We have a variety of
models going from simple spherical shells of radius R to hard core objects
with a delta function or a continuous distribution of mass that may even
have an infinite range with a Gaussian behaviour. This distribution is
introduced in some ad hoc manner to reach some specific goals and in
general the radius is constrained with an upper bound ωR < c, to avoid
the possibility of having matter moving with the speed of light.
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Once these parameters m, I and S are fixed, the dynamics is reduced
to the description of the evolution of the center of mass q ≡ r and the
rotation of a body frame with angular velocity along the spin direction.
From the kinematical viewoint it is a system of seven kinematical vari-
ables, time t, position r and orientation α that describes the orientation
of the body frame. It turns out that this model agrees with the non-
relativistic particle with kinematical space G/ where i s
the three-parameter subgroup of Galilei boosts. But in our kinemati-
cal approach it is not necessary to assume either size and shape or any
mass distribution. The knowledge of the extended Galilei group invari-
ants, mass m, spin S and internal energy H0 and the seven kinematical
variables, is sufficient to conjecture some Lagrangians.

From the relativistic point of view the main problem lies in the rigidity
of this system. If it is an extended object, the velocity of an arbitrary
point is changing depending on the relative situation to the observer and
therefore taking into account the Lorentz contraction factor, its distance
to the nearest neighbouring points is changing in time so that we have no
rigid body at all. In our kinematical formulation this model is forbidden
because the Lorentz boosts, and therefore the manifold equivalent to
the nonrelativistic subgroup does not form a subgroup of the
Poincaré group and it follows that no homogeneous space with that
kinematical structure can be defined.

The center of mass dynamics is subjected to Newton-like equations
in terms of the external forces and fields, and for the spin dynamics a
torque equation is assumed provided some relationship between the mag-
netic moment and spin is defined. To achieve this a charge distribution
is introduced and its rotation gives rise to the magnetic dipole moment
with a suitable gyromagnetic ratio depending on the companion mass
density distribution. If the charge density is spherically symmetric there
is no electric dipole but it has in general electric multipole momenta.
This produces additional complications. If the charge is distributed we
must glue it to matter to keep from repulsive deformation. Then mat-
ter is under some stress that defines its internal structure. Poincaré’s
stress tensor 8 solves this problem; its difficulties have been extensively
discussed elsewhere and it will be unnecessary to reproduce them here.

The spinless version of this model is known as the Abraham-Lorentz-
Poincaré model. 9 When applied to describe the electron it is assumed
that it is a sphere only in the rest frame, the mass is of electromag-
netic origin, and that there is a self-interaction which gives account of
a very important feature: the radiation reaction term or the energy loss
by radiation of an accelerated particle. This very important subject of
analyzing the radiation reaction of a spinning particle has not been dealt
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with in our kinematical approach, and it deserves a much more thorough
analysis.

2.2 WEYSSENHOFF-RAABE MODEL
This is a field theoretical model in which the system is considered as a

continuous spin fluid, such that the integration of the different densities
to a very small volume, in the limit when the size of the volume vanishes,
define the corresponding properties of a spinning particle. 10

The field is characterized by a four-momentum density g µ (x ) and
also with an angular momentum density s µv (x ) = – svµ (x ). Four-vector
u µ (x) represents the velocity of the fluid at point x. The fluid considered
is of a magnetic type, i.e., the components s0i (x ) of tensor s µv (x ) vanish
for the rest frame observer at point x, so that the space-space compo-
nents s i j define a three-vector density s, the spin density of the system.
For an arbitrary observer, the electric components s0i(x ) define another
vector density k = u × s / c. This magnetic condition is contained in the
covariant expression

(5.19)

The energy-momentum tensor of a spinless fluid is usually defined as
T µv =  ρuµ uv = T v µ , where ρ(x ) is the mass density. For a fluid with
spin T is no longer symmetric and is defined asµ v

(5.20)

Dynamical equations are constructed by considering local conserva-
tion of momentum-energy and also of total angular momentum density,
which is defined by

If the dynamics is described in terms of some arbitrary evolution pa-
rameter , then dynamical equations are

where D is a -differential operator such that when applied to any field
density ƒ (x ) it gives

Then D gµ = 0 amounts to ∂µ T µv = 0, which is the usual form of energy-
momentum conservation. The second equation, after using D gµ  = 0,
and that D x µ = u µ , gives

(5.21)
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Therefore, the existence of an internal angular momentum is related to
the asymmetry of T µv and from its definition with the non-collinearity
between the density of linear momentum g and  uµ . The fluid is moving µ

at velocities below c, so that u µ is time-like and satisfies uµ uµ = c 2. The
invariant magnitude

defines a mass density of the fluid, such that after contraction of (5.21)
with uv we obtain

where the magnetic condition (5.19) and have been used.
We see that for spinless systems the energy-momentum density reduces
to the usual one g µ = ρuµ and T µv becomes symmetric.

Now a particle is defined as the integration of the above densities over
a region of space at some instant This integration region is as small as
possible, to consider that uµ and are constants during the integration.
This allows us to write

(5.22)

and also
(5.23)

and dynamical equations for a free particle become

(5.24)

Because P µ can also be written as

(5.25)

with m = uv Pv / c2 , we can also write dynamical equations for the veloc-
ity and the spin components. Using (5.24) and differentiation of (5.25),
we get

(5.26)

(5.27)

because = 0. They obtain, therefore, for a spinning particle of a
magnetic type, third-order differential equations for the position of the
particle.
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These dynamical equations were first obtained by Frenkel 11 and also
by Mathisson 12 as particular cases and in the context of General Rela-
tivity.

Solutions of the above dynamical equations in the non-relativistic case
were obtained by Mathisson, in the above mentioned references, and give
rise for the particle to a circular trajectory at constant velocity in the
center of mass frame.

In the center of mass frame, equations (5.27) are written as

(5.28)

where the spin S is a constant vector in this frame. If we choose the
spin along the OZ axis and we call ω = mc2 / S, the above equations for
the velocity components are

so that

and therefore we obtain the fourth-order dynamical equations for the
position of the point, similar to the ones we found for the non-relativistic
spinning particle with spin of (anti)orbital nature (2.81). The motion is
clearly circular because velocity and acceleration are orthogonal vectors
and thus the motion is with a velocity of constant absolute value. In a
certain sense the condition (5.23) plays the role of a first integral that
reduces the order of the above fourth-order system to system (5.28), thus
selecting only the circular one, among all the possible elliptic trajectories.
For a spin 1/2 particle the frequency of the motion is the zitterbewegung
frequency of the spinning electron, so that an arbitrary velocity implies
an arbitrary radius, and we have no way to fix it.

The relativistic solution found by Weyssenhoff and Raabe also gives a
circular motion of the particle in the center of mass frame. Contraction of
(5.26) with S µv , using the magnetic condition (5.23), leads to 
and thus S µv Sµv =constant, that in the center of mass frame defines a
constant spin vector S. Since P0 = mu0 = m γ(u)c is also constant,
this implies that the absolute value of the velocity u is another constant
of the motion so that dynamical equations in the center of mass frame
P = 0, become
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with a = d u /dt. Because now u is constant, the motion is circular in a
plane orthogonal to the spin and with angular frequency

To compare this model with the ones we have presented before we have
to restrict ourselves to relativistic models with velocities below c, i.e., to
the spinning Bradyons. Whether or not spin variables are dependent on
other kinematical variables, we shall now discuss in the example worked
out in Section 3.1 of Chapter 3.

In this example the equivalent to the S µv tensor is the translation
invariant part of the kinematical momentum K and angular momentum
J. They are given in the general case by

where

Both K and J are, respectively, the space-time part and the space-space
part of the tensor

so that the S i0 define the three-vector D /c and the S i j the so-called
spin part S 0 = u × U + W .

Since P and J are conserved quantities for a free particle, the equa-
tions

are consistent with dynamical equations (5.24).
For a reference frame in which the particle is instantaneously at rest,

D a n d  S 0 observables reduce to U and W respectively, so that both
parts, the electric and magnetic terms, are non-vanishing. Even more,
in the particular case in which no orientation variables are involved it
is the magnetic term that vanishes in this rest frame. Vanishing of
U means, basically, the vanishing of the acceleration. This is not a
coherent statement because it contradicts the inertia principle even in
the relativistic approach, because in special relativity if the particle is
accelerated in some reference frame it is not possible to find any other
inertial frame in which acceleration vanishes. If the magnetic properties
of the particle are related to its current, it is clear that in the rest
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frame we have a static charge and therefore no current and therefore no
magnetic effects.

We thus arrive at the conclusion that the magnetic condition (5.23)
is too strong to be sustainable as a basic statement for a spinning par-
ticle, because it is necessary to have the existence of both instantaneous
electric and magnetic dipole momenta.

Nevertheless, it is not necessary to claim any spin fluid dynamics to
obtain the above equations. It can be described by assuming that the
elementary particle has an energy H and linear momentum P, that are
conserved in a free motion, and other constants of the motion Jµv defined
by

The antisymmetric tensor S µv is considered as an intrinsic property
which contains the spin structure of the particle. In our notation, the
essential components of J µv define the vectors

so that D and  S 0 are the essential components of tensor S µv . T h e
magnetic condition (5.23) amounts to considering that in the frame in
which the velocity u = 0, these magnitudes take the values a n d

= 0, so that in any arbitrary frame, according to (3.81,3.82), they
take the values

Thus,

so that the above observables take the form for a pure magnetic particle
a s

where S is considered the spin of the system. Because K and J, i n0

addition to H and P, are constants of the motion for the free particle we
get from here, taking the time derivative, the spin dynamical equation

(5.29)

a n d
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If we substitute here the derivative of S0 , we get the expression of the
linear momentum

239

The term γ(µ) (H – u · P ) /c 2 ≡ P µ  uµ / c 2 = m is the mass term of
Weyssenhoff and Raabe, assumed as a constant of the motion.

It is clear that the term H – u · P , in the center of mass frame (P = 0),
takes the value mc2 and the spin S0 is a constant vector S and thus we
get in this frame the dynamical equation

(5.30)

and because the velocity is orthogonal to the acceleration, it repre-
sents a circular motion with constant velocity u in a plane orthogonal
to the spin. It must be remarked here that the relative orientation of
the different magnitudes correspond to an intrinsic spin oriented in the
(anti)orbital direction corresponding to the particle motion as depicted
in Figure 5.1.

Figure 5.1. Motion of the particle in the C.M. frame.

To our knowledge no discussion of this relative orientation has been
produced in this early literature about elementary spinning particles,
but it agrees with the zitterbewegung part of all the models, either
relativistic or non-relativistic, we have found in this monograph.

In the general case = 0 for a free particle and this leads to a
third-order dynamical equation for the position of the particle. But, if
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considered under our definition of the center of mass observer, i.e., not
only P = 0 but also K = 0, we get from (5.29)

which also corresponds to a circular motion with constant velocity and
radius R 0 = Su/ m c2 and angular velocity ω = m c2 /S.

We see that the magnetic condition leads to a particular case of our
spinning Bradyon, but the idea is that this condition should be replaced
by S µ v Pv = 0, i.e., a pure magnetic dipole in the center of mass frame,
as is considered in the Hanson and Regge model (5.7). This amounts to
D· P = 0 and H D + S × P = 0, so that D = 0 in the center of mass
frame. But if D = 0 this produces no separation between the center of
mass and center of charge and thus no zitterbewegung.

2.3 BHABHA-CORBEN MODEL
Bhabha and Corben assume a model with a charge and dipole dis-

tribution with an anomalous coupling to the electromagnetic field. l 3

The particle is a point with coordinates which are functions of
the proper time measured from an arbitrary point on the word line of
the particle. The velocity is and the spin is described by an
antisymmetric tensor which may also be considered as a func-
tion of . The particle has a charge e and a dipole characterized by the
parameter g, such that the current and dipole distribution are given,
respectively, by

(5.31)

(5.32)

where

The four-velocity satisfies at any instant

(5.33)

In addition to this, in order that the constant g should have a meaning
as an intrinsic property of the particle, they demand the constraint

(5.34)
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at every instant , and also all the derivatives of these expressions
(5.33-5.34) up to a finite degree.

Final dynamical equations are written in the form

(5.35)

(5.36)

The different terms above are:

and the antisymmetric tensors

are expressed in terms of the well-defined parameters m, e and g and
two constant parameters I

(reac.)
1 and I 2 .

(reac.)
Tµ and D contain theλ µ

contributions of the self-fields and the radiation reaction modification to
the linear and angular momentum, respectively.

In addition to (5.34) the magnetic condition S µ v uv = 0 is assumed.
In the case of electrons, compatibility with the scattering of light by
electrons according to the Klein-Nishina formula, 14 require for the above
parameters the values g = 0, I1 = 1/c2 and I2 = 0. Therefore systems
with g ≠ 0 have a nonvanishing anomalous magnetic moment.

They admit the model is suitable for describing the electromagnetic
interaction of protons, neutrons and charged mesons, by assuming a
coupling with the electromagnetic field of the form

so that the presence of the spin is only responsible for the anomalous
coupling.

A particular analysis of the above dynamical equations was carried
out by Corben. l 5 With the above choice of constants and neglecting
the radiation reaction terms, dynamical equations (5.35)-(5.36) for the
electron (g = 0) become

(5.37)

(5.38)



242 KINEMATICAL THEORY OF SPINNING PARTICLES

The right-hand side of (5.37) is just the Lorentz force and this allows us
to define the four-momentum as

by using the magnetic condition. Then we can write after some manip-
ulations

In terms of the components of four-vector P µ

space-space part of S µv , S i j ≡ S , the time-space part S
– u × S / c the above equations look rather simple:

≡ ( H / c , P ), and the
i 0 ≡ D =

(5.39)

(5.40)

(5.41)

(5.42)

(5.43)

We can check that P µ u µ = mc 2 but P µ P µ ≠  m 2c2 , and therefore for
a free electron = 0. It is doubtful whether parameter m can be
interpreted as the true mass of the particle, but nevertheless it is directly
related to it.

In the case P = 0, the energy takes the value H = m c2 / γ(u). Equa-
tion (5.42) implies that the spin S is constant in time and thus (5.39)
leads for the velocity to the equation

(5.44)

Velocity and acceleration are orthogonal vectors and this represents a
circular motion at constant velocity in a plane orthogonal to the spin. It
is the magnitude m / γ(u) which plays the role of the mass of the particle
and with this interpretation (5.44) exactly becomes the Weyssenhoff-
Raabe zitterbewegung (5.30).

In Corben’s words ‘the center of mass of the particle is not at the
position of the particle, remaining instead fixed at the center of the
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circle around which the particle is moving. In this sense, the classical
equations reflect the zitterbewegung of the Dirac equation and reveal
the physical origin of the magnetic moment’. l6

We can deduce from the above sentences that for Corben’s interpreta-
tion it is the charge of the particle which is moving around the center of
mass. This motion is the origin of the magnetic moment. Nevertheless,
he does not give any expression of the magnetic moment in terms of this
motion and even its relationship with the spin (5.32), for the anomalous
case, is an ad hoc one.

By inspection of equation (5.44), we find again that the zitterbewe-
gung of Corben’s electron is exactly the same as in Figure 5.1 or as in
any of the (anti)orbital motions we have obtained in previous models.

with some additional internal magnetic structure. Four-velocity v =µ

such that in a homogeneous external elec-
tromagnetic field F µ v the position of the point satisfies the dynamical
equations

2.4 BARGMANN-MICHEL-TELEGDI MODEL
This is a point particle system l 7 with position four-vector x µ , and

(5.45)

We use here the symbol v µ for the four-velocity because it represents
the center of mass velocity of the particle, to distinguish from the uµ

four-velocity which we have reserved for the center of charge velocity in
all the models.

The equivalent to the magnetic condition (5.23), or better to (5.7),
is to assume the existence of an intrinsic spin vector S in the center of
mass frame giving rise only to a magnetic dipole moment without any
further electric dipole structure.

The difference with the previous model is, instead of assuming that
the spin internal structure is characterized by an antisymmetric tensor
S µ v , that the particle has associated a four-vector S µ that in the rest
frame of the particle takes the form S µ ≡ (0, S ). Therefore, for any
arbitrary frame, it satisfies the orthogonality condition

(5.46)

In this model they assume that spin is a constant of the motion for
the free particle and its dynamics, in the rest frame, is governed by the
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torque equation

(5.47)

The relation between1 the magnetic moment and the spin is expressed in
terms of the dimensionless parameter g, the gyromagnetic ratio of the
particle. For an arbitrary observer (5.46) implies that if S µ ≡ ( S 0 , S ),
then S 0 = S · v , so that and for the rest frame observer
it reduces to

(5.48)

Bargmann-Michel-Telegdi’s dynamical equation (BMT for short), is
the covariant generalization of (5.47) and (5.48) to arbitray frames. They
consider as the spin four-vector the scaled Pauli-Lubansky four-vector
W µ / mc ≡ ( P · S , H S / c) / mc, given in (3.14), which in the center of mass
frame reduces to (0, S ). Equation (5.46) is equivalent to W µ Pµ = 0, a
relation that holds between the two four-vector operators that define
the Casimir operators of the Poincaré group, provided the momentum
is related with the center of mass velocity by

A covariant expression that can be constructed out of tensors S µ,
preserving the homogeneity of the different terms,

linear in the spin components and consistent with the orthogonality con-
dition (5.46) and its -derivative, is

(5.49)

where they take c = 1. Using dynamical equations (5.45) in the last
term they finally get

(5.50)

showing clearly the g – 2 anomaly. For strict g = 2 particles it reduces
to the same linear dynamical equations for the spin components as in
(5.45).

The last term of (5.49), which is not an explicit function of parameter
g, is of pure kinematical origin and gives rise to the Thomas preces-
sion of spin even if there is no magnetic moment present, provided the
acceleration is different from zero. l 8

Bacry 19 points out that equation (5.45) where the only external force
is the Lorentz force, is only valid for uniform external fields. Otherwise
the presence of the magnetic moment will produce on the particle an
additional force related to the local variations of the fields of the form
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which has to be included on the right-hand side of (5.49).
In previous models, spin dynamics has been guided by the idea that

Dirac’s electron spin is no longer a constant of the motion even for
the free particle case, but it satisfies the equation dS / dt = P × c α ≡
P × u, which has as a covariant generalization the dynamical equation

In Dirac’s theory Pµ ≠ m u µ but it is related
to some average value of u . It is difficult to reconcile this dynamicalµ

equation with the idea that a pure magnetic moment has a torque-like
dynamical equation, except if we consider that Dirac’s spin operator
does not represent the same angular momentum observable as the BMT
spin S does.

In our formalism the spin observable is related more to BMT spin
than to Dirac’s but the velocity v represents the center of mass velocity.
Even for non-relativistic particles we have obtained torque equations of
the above form, but including an additional electric dipole torque

(5.51)

in which the presence of the instantaneous electric dipole d is unavoid-
able for a general spinning particle.

These authors also suggest to include some electric dipole related to
the spin by

where g' is a phenomenological parameter. But in the models presented
in this book, the possible electric dipole structure is not lying along the
spin direction but is orthogonal to it.

2.5 BARUT-ZANGHI MODEL
This is a semiclassical model because in addition to space-time vari-

ables the description of the internal degrees of freedom is expressed in
terms of Dirac’s spinors. In this way, when quantizing the system, the
internal variables will give rise to a spin 1/2 object. 20

The classical system is characterized by the kinematical variables xµ ,
µ = 0,l,2,3, where x µ ≡ (ct , r ) are the time and the position of the
charge, and the internal structure is described by means of a dimen-
sionless four-component complex Dirac spinor z ∈ , with conjugate
momentum , where being the hermitian conjugate Dirac
spinor. The dynamics is expressed in terms of some invariant evolution
parameter , with dimensions of time.
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The particle is a system characterized by the Poincaré invariant La-
grangian

(5.52)

If we consider as independent dynamical variables x µ , and the p µ

play the role of Lagrange multipliers that establish the constraint
 i.e., the four-velocity of the charge is related to Dirac’s current.

A predecessor of this use of spinors in classical dynamics leading to
the same dynamics is the work by Proca, 21 who also obtains a classical
Lorentz force by asuming a minimal coupling interaction of the current
associated with the spinor variables with the external electromagnetic
potentials. Proca also analyzed the case in which classical particles
move at the speed of light, 22 but in that case the model leads to a spin
tensor S µv of vanishing value S µ v S µ v = 0. This is inconsistent with a
pure magnetic particle, but agrees with our spinning electron in which in
addition to the magnetic part it also has an electric dipole part related to
the nonvanishing S 0 i components, which define the three-vector S × u /c,
and because u = c we get the vanishing of the invariant S µ v Sµ v = 0.

Dynamical equations obtained from (5.52) are

where

In the case of a free particle (Aµ  = 0), pµ is constant  and  pµ p µ = m2c2 .
The Hamiltonian of the system is

and the solution for the Dirac spinor, in units = 1 and c = 1, is

and

where ω = 2m in these units. In our units ω = 2mc/
as our zitterbewegung frequency.

The spin is defined as

and is the same
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and is neither a constant of the motion nor the orbital angular momen-
tum. But, the total angular momentum

is a conserved quantity, = 0.
The velocity of the particle becomes

(5.53)

which is not lying along pµ and shows a clear oscillatory zitterbewegung
motion of frequency ω, in addition to the translational motion along pµ .

Instead of using the spinor variables z and , it is also possible to
describe the dynamics in terms of the spin variables. Then the equivalent
dynamical equations are:

where the dynamical variables are x µ , u µ , πµ and S µ v .
Recently, Salesi and Recami 23 have applied this model to the inter-

action with a uniform external magnetic field. Taking the magnetic field
B along the OZ axis, the dynamical equations become

where S z = ±1/2 is the component of spin along the OZ axis. Taking
the next order derivative and using the expression for we
get

This system of equations has circular motions of angular frequency λ
around the O Z axis as particular solutions. Then, and

and similarly for their derivatives. Therefore, the normal
frequencies satisfy the third order algebraic equation

(5.54)

If we set a = where is the cyclotron frequency and
ω = 2m the internal zitterbewegung frequency, when expressing the
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above equation (5.54) in terms of the variables z = λ / ω and b = S z /2,
it leads to

z 3 – (1 – 3ab)z + a = 0.

This equation with b = 0 is exactly the equation for the normal frequen-
cies we obtained in the case of the non-relativistic model of (anti)orbital
spin in Sec. 4.3 of Chapter 2. However our model cannot give rise to
spin 1/2 particles when quantized. It needs another contribution to spin
coming from the orientation variables.

To lowest order in the parameter a, the normal frequencies in terms
of the dimensionless time θ ≡ , as in the mentioned example, are

that can be compared with the ones in (2.114). According to this model
the dominant macroscopic mode corresponds to the frequency ω1 , which
is basically a modification of the cyclotron frequency, while the other
two modes ω2 and ω3 correspond to slight corrections of the internal
zitterbewegung frequency. But frequency ω1 depends on the orientation
of spin S z and therefore spin up electrons move a little bit faster than
the spin down ones. To lowest order

and therefore an electron beam injected into a cyclotron will produce
spatial separations of polarized electrons in the beam, after waiting for
a sufficient number of turns.

The only objection to this interpretation comes from the meaning of
the velocity u µ in (5.53). If, as in our models, it represents the velocity
of the charge, as can be deduced from its general expression (5.53), this
will produce a difference in the precession frequency of spin but not in
the difference between the center of mass velocity of spin up and down
electrons and thus the predicted effect will not be observed.

2.6 ENTRALGO-KURYSHKIN MODEL
There are many phenomenological models in the literature. We in-

clude only Entralgo-Kuryshkin’s model in our review, because of the
importance given to the intrinsic electric dipole in spite of the magnetic
moment of the particle.
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The basic idea is that the zitterbewegung of elementary particles re-
flects the fact that an elementary object, although very small, is no
longer point-like but rather it is an extended object. Its dynamics can
be described by the evolution of two different points: the center of mass
q( t ) and the center of charge r 24 It looks like the bilocal model,(t).
analyzed in Section 1.3, but it needs some more degrees of freedom to
describe the electromagnetic structure of the particle.

This model is non-relativistic, and an elementary particle is consid-
ered as a ‘structural point particle’ in the sense that it is a cluster of
point particles of finite, but arbitrary number. These points have masses
mi , charges e i and are placed at positions r i , i =    1, . . . , n, with linear
momenta  i mi , where the dot means time derivative, and in generalp =
all these internal features will be unobservable.

The physical observable attributes of the particle are its total mass
m = m i and total charge e = ei . The position of the center of
mass of the particle is, as usual, defined by

and the total linear momentum p = m  = p i .
Due to the internal motion of the cluster of point particles, this system

also has internal angular momentum s , in terms of which the spin S will
be defined, and an electric d and magnetic µ dipole momenta. If the
relative position of the internal points with respect to the center of mass
is defined by k i = ri – q , then these momenta are given, respectively,
b y

(5.55)

For all these particles to be held together, an unobservable confine-
ment potential W (k1, . . . , k n ) must exist, in such a way that the relative
position variables are restricted to where the parameter l 0
is very small. In addition to the above intrinsic properties of the parti-
cle as a whole, there are other internal mechanical and electromagnetic
properties, like internal kinetic energy , internal potential energy W 0

given by

which contain the confinement potential and the elastic potential energy
E p , and the different electric and magnetic multipoles produced by the
cluster of unobservable points.
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Thus, from a global viewpoint, in addition to the point characteristics
m, e, q and p , there is a chain of structural characteristics s, d, µ ,

, . . . . Therefore dynamical equations contain an undetermined number
of degrees of freedom so that to produce a finite dynamical system it
is necessary to introduce some plausible constraints. Their claim is to
reduce the phase space of the system to a manifold of dimension 15 with
variables ai , i = 1, . . . , 15, and chosen as the basic ones the variables
(q, p,  d,  d, s ), such that the remaining characteristics will be expressed
as functions of them, µ (a ), (a ), W0 ( a), etc.

The spin is defined as

with χ = l c 2 , l being a constant parameter with dimensions of length,
and therefore is different from the internal angular momentum s and is
not proportional to the magnetic moment µ with the usual relation.

This phenomenological model contains at least five intrinsic param-
eters: the mass m, charge e, a gyromagnetic ratio g , a characteristic
length l and finally an internal frequency ω that is interpreted as the
zitterbewegung frequency, and represents the frequency of oscillation of
the electric dipole d in the center of mass frame. Then they suply dy-
namical equations for the above 15 independent dynamical variables,
where s is replaced by the total spin S . We are not going to discuss
the dynamics of this system for which, although it is non-relativistic,
one of the difficulties is to properly justify the constraints that lead to
the proposed dynamical equations. On the contrary, the model should
be justified as a particular model to meet the needs of some experiment
with the subsequent determination of the free parameters, but not as a
general framework for describing elementary spinning particles.
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Chapter 6

We review in this chapter some features related to the spin structure
of the particle models. We analyze first the electromagnetic structure
of the electron, in particular the electromagnetic field associated to a
charge with circular zitterbewegung and the magnetic and electric dipole
structure. The fields are not static but a time average over a complete
turn of the charge shows a nice behavior with the fields of a point charge
e and an intrinsic magnetic dipole µ at rest in the center of mass.

One salient feature of the classical spinning models with zitterbewe-
gung is the possibility of obtaining a nonvanishing crossing through a
potential barrier, for kinetic energies below the potential wall, which in
quantum mechanics is termed the Tunnel Effect. This feature, like the
Darwin term of Dirac’s equation, is related to the instantaneous electric
dipole of a charged spinning particle. A section is devoted to previous
works on the concept of center of mass or position operator in quantum
mechanics and its relationship with the center of mass and spin analyzed
in this monograph.

From the geometrical point of view, we also show the relation between
the kinematical approach and the realization of the kinematical space as
a Finsler space, where particle trajectories are geodesics on this manifold.
Some hints are given to consider spin in the context of General Relativity.
We analyze the extension of the kinematical groups by including local
rotations of the body frame, local Lorentz transformations and space
and time dilations, and to the analysis of the Conformal group and the
different observables obtained from it. We consider finally the so-called
classical limit of quantum mechanics that, basically, leads to the classical
mechanics of spinless systems.
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SPIN FEATURES
AND RELATED EFFECTS
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1. ELECTROMAGNETIC STRUCTURE OF
THE ELECTRON

Let us consider that the classical electron is described by the model
whose charge is moving in circles at the speed of light in the center of
mass frame.

One of the immediate questions concerning the classical structure of
the electron is, what is the associated electromagnetic field of the parti-
cle? We see that the charge is accelerated and according to the classical
electromagnetic theory, the particle must necessarily radiate continu-
ously. However, from the mechanical point of view we have produced
a classical free system, such that properties like mechanical energy and
mechanical linear and angular momentum are conserved in time. The
Lagrangian that describes the system is Poincaré invariant, and if we
think about a free system, the corresponding field structure cannot pro-
duce loss of energy and linear momentum. The free particle has to have
associated an electromagnetic field without radiation. Radiation has to
be produced whenever the center of mass of the particle is accelerated,
i.e., when the particle is no longer free.

There must exist radiationless solutions of Maxwell’s equations, as-
sociated to point charges moving in circles at the speed of light. One
possibility is to consider solutions derived from the Liénard-Wiechert
potentials (A µ

ret + A
µ

adv )/2, where A µ
r et and A µ

adv are the corresponding
retarded and advanced potentials. But, even if we take as the proba-
ble electric field (E r e t + Ea dv )/2, it is neither static nor Coulomb-like,
and therefore it does not look like the estimated electric field of a point
electron. We shall consider next a particular static solution: the time
average field during a complete turn af the charge.

1.1 THE TIME AVERAGE ELECTRIC AND
MAGNETIC FIELD

Let us assume that we have a test charge in the neighborhood of the
electron. The frequency of the zitterbewegung is very high, of order
~10 21 s –1 . If our test particle is moving slowly, then presumably the
detected electric field will be some time average field during a complete
turn of the charge.

The retarded (or advanced) electric field of a point charge at the
observation point x at time t is given by 1

where

(6.1)
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(6. 2)

are the velocity and acceleration fields, respectively. Observables r, u =
dr/dt and a = du/dt, are the position, velocity and acceleration of the
charge, evaluated at the retarded (or advanced) time (or

Vector β = u/c, and

The corresponding magnetic field is B = n × E /c. Because for the
electron the charge is moving at the speed of light β = 1, the velocity
field E vanishes, and it seems that the only field contribution behavesβ
as 1/R.

The complete analytical expression of a time average field at any arbi-
trary point has not yet been obtained. However, to obtain an estimate,
let us compute the average field on some particular point. Let us con-
sider that the electron is at rest, with the center of mass at the origin
of a reference frame. The constant spin is pointing along the OZ axis.
We shall try to calculate this average field at a point P of coordinate z
in this OZ axis. In Figure 6.1, we represent the different magnitudes at
the retarded time needed to apply equation (6.2).

Figure 6.1. Instantaneous electric field of the electron at point P has a component
along – a⊥ and –β.

In that particular point shown in the figure, n · β β = 0, and thus
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where vector a ⊥  = a – n (a · n),  is the component of the acceleration
orthogonal to the unit vector n. For the observation point P, the ex-
pression n · a is constant at any retarded point, and the time average of
β during a complete turn is zero, and for the vector a⊥  it reduces to its
z-component a⊥  sin α. Since the acceleration in this frame is a = c 2 / R0 ,
a ⊥  = a cos α and sin α = R 0 /R and cos α = z/R, the time average
electric field at point P is

(6.3).

where is a unit vector along the OZ axis. The advanced field has
exactly the same expression. This is a radial field from the origin of
the reference frame with a Coulomb-like behaviour 1/z2 , but it does not
diverge at the origin. We depict this field in Figure 6.2, for comparison
with the Coulomb field of a point charge at the origin, where we take as
a unit of length the radius R0  of the internal motion.

We can clearly see the fitting of the average field and the Coulomb field
for large z. The maximum of the average field takes place at 
If we consider that the static field of a pointlike electron is this time
average field, then the electrostatic energy does not diverge. But to
obtain the expression for the energy is necessary to find the field at any
point, a goal that we have not attained.

Figure 6.2. Average retarded (or advanced) electric field (6.3) and Coulomb field
along the OZ axis.

However, if we are involved in high energy processes, our test particle
is moving sufficiently fast relative to the electron, then the field it senses
is the instantaneous 1/R field, which is greater than the average field,
and becomes important for points closer to the electron. This means that
the average energy density of the local instantaneous field is greater than
the average Coulomb-like energy density, and we can naively interpret
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this difference, from the classical point of view, as the energy associated
to the cloud of virtual photons in the surroundings of the particle. Is
this the corresponding infinite energy which is usually cancelled out in
the renormalization of quantum electrodynamics?

To compute numerically the average field at an arbitrary position, let
us consider the different magnitudes depicted in Figure 6.3.

Figure 6.3. Charge motion and observation point P.

If at time  t = 0 the charge is located at point A on the OX axis, then
at time t the different observables shown in the figure are described in
Cartesian coordinates and in the laboratory frame by

With these definitions, field (6.2) can be written as

We want to compare the time average value of this field with the static
Coulomb field of a point charge e at the center of mass
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where is a unit vector in the radial direction. The constant factor in
brackets in front of these formulae will be dropped out from now on. In
this way the unit of length is the zitterbewegung radius R0 .

When the charge is at the point indicated in Figure 6.3, the retarded
field it produces at point P is evaluated at the observation time to =
t + R/c. T h u s because If we express 
in terms of dt, we get where N and are explicitly
given by

We are going to average the field at P with respect to the observation
time at that point during a complete period of the motion of the charge
T. If we define a dimensionless evolution time = ωt , then ωT = 2 π
and thus

(6.4)

In terms of the evolution the different expressions are

and

while

and

We are interested in the radial and transversal part of the field Er =
respectively. Here and are

respectively the usual unit vectors in polar spherical coordinates. If we
consider that the observation point P is on the plane XOZ, then we
have to take sin and cos θ, where r is the radial
separation from the origin in units of R0 .

The final expressions for the field components are
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with

To take the time average value of the above fields we have to perform
the integration (6.4) so that the above expressions of Er , Eθ and Eφ

have to be multiplied by N ( ) / , where now

The average retarded radial electric field for θ = 0 is already depicted
in Figure 6.2 but we also include it in the next Figure 6.4. We see
the Coulomb behavior of the radial component for the directions θ =
0, π/3, π /4, π /6. Similarly, in Figure 6.5 is displayed the transversal
component of the average retarded electric field < Eθ( r, θ) > for the
same directions, that goes to zero very quickly. For θ = π/2, we see that
< E θ (r ,  π /2) >= 0. The average < E φ( r ,θ) > vanishes everywhere for
any θ ≠ π/2. On the plane θ = π/2 the numerical routine fails.

Figure 6.4. Time average < Er (r) > of the radial component of the retarded electric
field in the directions θ = 0, π/3, π/4 and π/6.

The average magnetic field can be computed in the same way. Here
we shall consider only the retarded solution and we will compare it with
the magnetic field produced by an intrinsic magnetic moment µ placed
at the center of mass. This magnetic field is 2
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Figure 6.5. Time average of the component < Eθ (r) > of the retarded electric field
in the directions  θ = 0, π/3, π/4 and π/6. It goes to zero very quickly. For θ = π/2 it
vanishes everywhere.

written as

For our system the magnetic moment produced by the moving charge is
of value ec R0 /2 in the direction of OZ, so that in units of R0 it can be

The nonvanishing components are

(6.5)

In our model, the instantaneous magnetic field is B = n × E/c. Their
components can be written, after deleting a constant factor e/cR , as:2

0

To proceed with the retarded time average integral we have to multiply
the above fields by N (t)/ (t), as before. The numerical integration is
compared with the analytical expression of the magnetic field of a dipole
(6.5) for different directions.

The magnetic dipole field (6.5) goes to infinity when r → 0. In Figures
6.6-6.8 we show the matching of the B0r ( r ) components of the dipole and
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the computed time average value < B (r ,θ ) >, for r > Rr  0 and in the
directions given by θ = π /6, π /4 and π /3. Similarly, in Figures 6.9-6.11,
for the corresponding B θ0  (r, θ ) and < B θ (r, θ ) > components.

Figure 6.6. Radial components of the dipole field B 0r ( r ) and the time average re-
tarded magnetic field < B r (r ) >, along the direction  θ = π / 6 .

Figure 6.7. Radial components of the dipole field B Or (r ) and the time average re-
tarded magnetic field < Br (r ) >, along the direction  θ = π /4 .

Figure 6.8. Radial components of the dipole field B 0r  (r ) and the time average re-
tarded magnetic field < B r (r ) >, along thedirection  θ  = π /3.

The computed time averages < B θ (r ( r ) > and < B r ) > do not diverge
at the origin but have the behavior depicted in 6.12 and 6.13, respec-
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Figure 6.9. Time average retarded magnetic field < Bθ (r ) > and the dipole field
B 0θ ( r ), along the direction θ = π/6.

Figure 6.10. Time average retarded magnetic field < Bθ(r ) > and the dipole field
B 0θ (r ), along the direction θ = π/4 .

Figure 6.11. Time average retarded magnetic field < Bθ (r ) > and the dipole field
B 0θ ( r), along the direction θ = π/3.

tively, when represented along the directions θ = 0, π/3, π /4 and π /6,
and they take the values cos θ and – sin θ respectively, at point r = 0.

The time average value of the transversal component < Bφ (r, θ) >
vanishes everywhere for all directions.



SPIN FEATURES AND RELATED EFFECTS 263

Figure  6.12. Time average retarded magnetic field < B r (r ) > along the directions
θ = 0, π /3, π / 4 and π/6 and its behavior at r = 0. For θ =  2 it vanishes everywhere.π /

Figure 6.13. Time average retarded magnetic field < B  > along the directionsθ (r).

θ = 0, π/3, π/4 and π/6 and its behavior at r = 0.

To end this section we can think about the possibility of computing
the average fields using the advanced solutions in spite of the retarded
ones.

Figure 6.14. Time average radial component < E r (r ) > of the advanced electric field
in the directions θ = 0, π/3, π/4 and π/6.

In that case the observation time will be related with the laboratory
time by t o = t – R/c, and therefore d t O = ( M (t ) / (t ))dt, where ( t ) is
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the same as before, but

Then, if we depict, for instance, the advanced average radial electric
field in Figure 6.14, for the same directions as in Figure 6.4, we see
the different behavior in these radial directions and, although the field
decreases for large distances, it nevertheless does not fit with a Coulomb
field.

The numerical routine fails to compute the corresponding integrals
for θ = π/2 where we have some indefiniteness of the integrands for ob-
servation points lying on the XOY plane. There are no singularities for
points inside the circle of radius R0 . We have a divergence of order 1/r
for points on this circle, but this divergence can be removed by taking a
principal value of the time integral. Finally, the quotient term 1 – n · β
can vanish for some observation points on the XOY plane outside the
circle of radius R0 , whenever the retarded n and β become parallel vec-
tors. But this can happen only for a single point of the retarded charge
position in the average integral and perhaps some kind of principal value
should be taken to properly obtain a finite average value. The difficulties
of obtaining an analytical estimate for these integrals make this analysis
incomplete. Nevertheless, the nice fitting of the average electric field
with a Coulomb field and the average magnetic field with the field of
a magnetic dipole, for distances of a few Compton wave lengths away,
except on the θ = π/2 plane where we have not been able to obtain an
estimate, suggests that we devote some effort to renormalize and improve
the model at a classical level.

1 .2 G Y R O M A G N E T I C  R A T I O
The g = 2 gyromagnetic ratio of the electron was considered for years

a success of Dirac’s electron theory. ³ Later, Levy-Leblond 4 obtained
similarly g = 2 but from a s = 1/2 nonrelativistic wave equation. Proca 5

found g = 1 for spin 1 particles and this led Belinfante 6 to conjecture
that the gyromagnetic ratio for elementary systems is g = 1/s, irrespec-
tive of the value s of its spin. He showed this to be true for quantum
systems of spin 3/2, and a few years later the conjecture was analyzed
and checked by Moldauer and Case 7 to be right for any half-integer
spin, and by Tumanov 8 for the value s = 2. In all these cases a minimal
electromagnetic coupling was assumed.

Weinberg made the prediction g = 2 for the intermediate bosons of9

the weak interactions when analyzing the interaction of W bosons with
the electromagnetic field by requiring a good high-energy behavior of the
scattering amplitude. The discovery of the charged W ± spin 1 bosons
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with g = 2, contradictory to Belinfante’s conjecture, corroborated Wein-
berg’s prediction and raised the question as to whether g = 2 for any
elementary particle of arbitrary spin.

Jackiw 10  has given another dynamical argument confirming that the
gyromagnetic ratio of spin-1 fields is g = 2, provided a nonelectromag-
netic gauge invariance is accepted. He also gives some ad hoc argument
for s = 2 fields, consistent with the g = 2 prescription.

Ferrara et al. 11 in a Lagrangian approach for massive bosonic and
fermionic strings, by the requirement of a smooth fixed-charge M → 0
limit, get g = 2 as the most natural value for particles of arbitrary spin.
However the only known particles which fulfill this condition are leptons
and charged W ±  bosons, i.e., charged fermions and bosons of the low-
est admissible values of spin. No other higher spin charged elementary
particles have been found.

The aim of this section, instead of using dynamical arguments as in the
previous attempts, is to give a kinematical description of the gyromag-
netic ratio of elementary particles 12 which is based upon the double
content of their spin operator structure as mentioned in the classical
analysis of Section 6.2 of Chapter 2.

The general structure of the quantum mechanical angular momentum
operator in either relativistic or nonrelativistic approach is

(6.6)

where the spin operator is

(6.7)

and ∇ u is the gradient operator with respect to the velocity variables and
W is a linear differential operator that operates only on the orientation
variables α and therefore commutes with the other. For instance, in the

ρ  = n  tan (α/2) parametrization W is written as

(6.8)

The first part in (6.7), related to the zitterbewegung spin, has integer
eigenvalues because it has the form of an orbital angular momentum
in terms of the u variables. Half-integer eigenvalues come only from
the operator (6.8). This operator W takes into account the change of
orientation, i.e., the rotation of the particle.

We have seen in either relativistic or non-relativistic examples that if
the only spin content of the particle S is related to the zitterbewegung
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part Z = u × U, then the relationship between the magnetic moment
and zitterbewegung spin is given by

(6. 9)

i.e., with a normal up to a sign gyromagnetic ratio g = 1. If the electron
has a gyromagnetic ratio g = 2, this implies necessarily that another
part of the spin is coming from the angular velocity of the body, but
producing no contribution to the magnetic moment.

Therefore for the electron, both parts W and Z contribute to the total
spin. But the W part is related to the angular variables that describe
orientation and does not contribute to the separation k between the
center of charge and the center of mass. It turns out that the magnetic
moment of a general particle is still related to the motion of the charge
by the expression (6.9), i.e., in terms of the Z part but not to the total
spin S. It is precisely when we try to express the magnetic moment in
terms of the total spin that the concept of gyromagnetic ratio arises.

Now, let us assume that both Z and W terms contribute to the total
spin S with their lowest admissible values.

For Dirac’s particles, the classical zitterbewegung is a circular motion
at the speed of light of radius R = S/mc and angular frequency ω =
m c²/S, in a plane orthogonal to the total spin. The total spin S and
the Z part, are both orthogonal to this plane and can be either parallel
or antiparallel. Let us define the gyromagnetic ratio as in Section 6.2 of
Chapter 2 by Z = g S. For the lowest admissible values of the quantized
spins z =1 and w = 1/2 in the opposite direction this gives rise to a
total s = 1/2 perpendicular to the zitterbewegung plane and then g = 2.

For s = 1 particles the lowest possible values compatible with the
above relative orientations are z = 2 and w = 1 in the opposite direction,
thus obtaining again g = 2. The possibility z = 1 and w = 0 is forbidden
in the relativistic case because necessarily w ≠ 0 to describe vector
bosons with a multicomponent wave-function.

No higher spin charged elementary particles are known. The predic-
tions of this formalism for hypothetical particles of s = 3/2 are z = 1
and w = 1/2 in the same direction, and thus g = 2/3, or z = 2 and
w= 1/2 in the opposite direction, and therefore g = 4/3. Similarly,
for s = 2 particles the lowest values are z = 1 and w = 1 in the same
direction, and thus g = 1/2, compatible with Belinfante’s conjecture.

1 . 3 INSTANTANEOUS ELECTRIC DIPOLE
The internal motion of the charge of the electron in the center of mass

frame is a circle at the speed of light. We call this particle a Dirac par-
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ticle because when quantizing this system with the additional condition
that the spin s = 1/2, its wave function satisfies Dirac’s equation. Nev-
ertheless in the classical version the value of the spin s and the angular
velocity of the system is unrestricted and therefore there are infinitely
many classical systems that when quantized satisfy Dirac’s equation.

The position of the charge in this frame is related to the total spin by
eq. (3.167), i.e.,

(6.10)

where S is the total constant spin and u = dk/dt, with u = c is the
velocity of the charge. In addition to this motion there is a rotation of a
local frame linked to the particle that gives rise to some angular velocity,
but this rotation has no effect on the electric dipole structure. (See Fig.
6.15 where the angular velocity and the local frame are not depicted).

Figure 6.15. Electron charge motion in the C.M. frame.

Now, from the point of view of the center of mass observer, the particle
behaves as though it has a magnetic moment related to the particle
current by the usual classical expression

where e is the charge and j (r – k ) = e dk/dt δ ³ (r – k ) is the particle
current density. The orbital term k × dk/dt is related to the zitterbewe-
gung part of spin that quantizes with integer values and which for spin
1/2 and spin 1 charged particles is twice the total spin S, giving rise
to a pure kinematical interpretation of the gyromagnetic ratio  g =  2 for
this model as seen in the previous section.
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But also in the center of mass frame the particle has an oscillating
instantaneous electric dipole moment d = ek, that is thus related to the
total spin by

(6.11)

This instantaneous electric dipole, which fulfills the usual definition
of the momentum of the point charge e with respect to the origin of the
reference frame, is translation invariant because it is expressed in terms
of a relative position vector k. It can never be interpreted as some kind
of fluctuation of a spherical symmetry of a charge distribution. Even in
this kind of model, it is not necessary to talk about charge distributions,
because all particle attributes are defined at single points.

In his original 1928 article, 13 Dirac obtains that the Hamiltonian for
the electron has, in addition to the Hamiltonian of a free point particle
of mass m, two new terms that in the presence of an external electro-
magnetic field are

where

(6.12)

i.e., Σ is expressed in terms of σ Pauli-matrices and α is Dirac’s velocity
operator when written in terms of Dirac’s gamma matrices.

We shall show that the quantum counterpart of expression (6.11) is in
fact the electric dipole term of Dirac’s Hamiltonian (6.12). The remain-
ing part of this section is to consider the representation of the ‘cross’
product in (6.11) in terms of the matrix (or geometric) product of the
elements of Dirac’s algebra that represent the quantum version of the
above observables, so that a short explanation to properly interpret these
observables as elements of a Clifford algebra is given in what follows.

Both, velocity operator u = cα and spin operator S are bivectors
in Dirac’s algebra, considered as elements of the Geometric or Clifford
algebra of space-time in the sense of Hestenes.l4

In fact, Dirac’s alpha matrices are written as a product of two gamma
matrices α i = γ0 γi and also the spin components Sj = 

interpreted as the four basic vectors of Minkowski’s space-time that gen-
erate Dirac’s Clifford algebra. They satisfy γ · γ ²= η µv, i.e.,v = 1γ0

and γ  = –1, where the dot means the inner product in Dirac’s Clif-²
µ

i
ford algebra. We thus see that velocity and spin belong to the even

cyclic 1, 2, 3, and where the four gamma matrices, γµ , µ = 0, 1, 2, 3 are
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subalgebra of Dirac’s algebra and therefore they also belong to Pauli
algebra or geometric algebra of three-dimensional space. Under spatial
inversions γ0  → γ0  and  γi → – γi , the velocity operator changes its sign
and it is thus a spatial vector, while the spin is invariant under this
transformation as it corresponds to a spatial bivector or pseudovector.

Figure 6.16. A basis for vectors (a) and bivectors (pseudovectors) (b) of Pauli alge-
bra.

The relationship between the cross product and the outer and inner
product of two vectors a and b in Pauli algebra is,

(6.13)

where ∧  represents the symbol for the outer product in geometric alge-
bra, the imaginary unit i represents the unit three-vector or pseudoscalar
and ia is the dual bivector of vector a.

The inner product of a vector b and a bivector A is expressed in terms
of the geometric product in the form

(6.14)

where in Dirac’s or Pauli algebra the geometric product bA is just the
ordinary multiplication of matrices.

If we choose a basis of vectors and pseudovectors as in Fig. 6.16,
where the double-lined objects of part (b) represent the dual vectors
of the corresponding spatial bivectors, and express in these bases the
observables of Fig. 6.15, then the spatial velocity vector u = cγ γ0 2 and
the pseudovector S = ( /2) γ2 γ and therefore, using (6.13) and (6.14)3
we get

Now vector k = Rγ0 γ3 with R = 2 mc, and substituting in (6.11) we
get the desired result.
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1.4 DARWIN TERM OF DIRAC’S
HAMILTONIAN

When analyzing Dirac’s equation in the presence of an external elec-
tric field E, Darwin 15 found in the expansion of the Hamiltonian an
energy term, that bears his name, of the form

(6.15)

The usual interpretation of this term 16 corresponds to the idea of zitter-
bewegung and therefore to the fluctuation of the position of the electron
r around the center of mass q. In our models this is very well under-
stood because for the spinning electron, considered as a Luxon, there
is a separation S/mc between the center of mass and center of charge.
Thus, by expanding the interaction potential around the center of mass
q we get

The fluctuation of the relative coordinates of the center of charge position
vanish and thus < δri >= 0. Similarly <δri δrj >= 0 for i ≠ j and the
lowest order non-vanishing terms come from the fluctuations of

We thus get

but for a spin 1/2 particle S ²= 3  /4 and by multiplying the above
expression by the electric charge e we get the electrostatic potential
energy of a charge at point q, e V (q), and the additional Darwin term
(6.15). One important feature is that the Darwin term, related to the
separation between the center of mass and center of charge, can also be
used within a non-relativistic context, as shown by Fushchich et al. 17

2. CLASSICAL SPIN CONTRIBUTION TO
THE TUNNEL EFFECT

As a consequence of the zitterbewegung and therefore of the above
analysis of the separation between the center of mass and center of
charge, we shall see that spinning particles can have a non-vanishing
crossing of potential barriers.
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Let us consider a spinning particle with spin of (anti)orbital type, as
described in Section 4. of Chapter 2, under the influence of a potential
barrier. The Langrangian of this system is given by:

(6.16)

Sharp walls correspond classically to infinite forces so that we shall con-
sider potentials that give rise to finite forces like those of the shape
depicted in Fig. 6.17, where V0 represents the top of the potential.

Triangular potential barrier.Figure 6.17.

Then the external force F (x), is constant and directed leftwards in
the region x ∈ (–a, 0) and rightwards for x ∈ (0, b ), vanishing outside
these regions.

Potentials of this kind can be found for instance in the simple exper-
iment depicted in Figure 6.18 in which an electron beam, accelerated
with some acceleration potential Va , is sent into the uniform field re-
gion of potential V0  contained between the grids or plates A, C and B.
Similarly in the α -decay process, the estimated potential of the nucleus
depicted in Figure 6.19 has a Coulomb-like behaviour for large distances
and an unknown dotted part, and where R0 is the radius of the nu-
cleus. Distance R1 10 –14  m  is the estimated position of the top of the
potential.

In Figure 6.18 from a strict classical viewpoint a spinless electron stops
at the dotted line and is rejected backwards. But a classical spinning
electron can cross the barrier provided its kinetic energy is above some
minimum value, although below the top of the potential. This minimum
value depends on the separation between plates.
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Figure 6.18. Electron beam into a potential barrier. A classical spinless electron
never crosses the dotted line. A spinning particle of the same energy might cross the
barrier.

Let us assume for simplicity that the spin is pointing up or down in
the z direction such that the point charge motion takes place in the
XOY plane. Let qx , q y  and q z = 0, be the coordinates of the center of
mass and x, y and z = 0, the position of the charge.

Figure 6.19. Potential Energy of an α-particle in the electric field of a nucleus.

The dynamical equations are

(6.17)
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(6.18)

where

Equations (6.17) are nonlinear and we have not been able to obtain
an analytical solution in closed form. We shall try to find a numerical
solution. To make the corresponding numerical analysis we shall define
different dimensionless variables. Let R be the average separation be-
tween the center of charge and center of mass. In the case of circular
internal motion, it is just the radius R0  of the zitterbewegung. Then we
define the new dimensionless position variables:

The new dimensionless time variable α = ωt is just the phase of the
internal motion, such that the dynamical equations become

where A ( ) is given by

In the case of the relativistic electron, the internal velocity of the
charge is ωR = c, so that the parameter e/mc ² = 1.9569 × 10 –6 V–1 , and
for potentials of order of 1 volt we can take the dimensionless parameter
eV0 /mω² R² = 1.9569 × 10 –6 .

If we choose as initial conditions for the center of mass motion

then the center of mass is moving along the OX axis. The above system
reduces to the analysis of the one-dimensional motion where the only
variables are and .  Let us call from now on these variables q and x
respectively and remove all hats from the dimensionless variables. Then
the dynamical equations to be solved numerically are just

(6.19)
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(6.20)

where A (x ) is given by

Numerical integration has been performed by means of the computer
package Dynamics Solver. 18 The quality of the numerical results is
tested by using the different integration schemes this program allows,
ranging from the very stable embedded Runge-Kutta code of eight or-
der due to Dormand and Prince to very fast extrapolation routines. All
codes have adaptive step size control and we check that smaller toler-
ances do not change the results.

Figure 6.20. Kinetic Energy during the crossing for the values a = b = 1.

With a = b = 1, and in energy units such that the top of the barrier
is 1, if we take an initial kinetic energy K below this threshold, K =

(0)² /2eV0 = 0.41 we obtain for the center of mass motion the graphic
depicted in Fig. 6.20, where is shown the variation of the kinetic energy of
the particle K (q), with the center of mass position during the crossing
of the barrier. There is always crossing with a kinetic energy above
this value. In Fig. 6.21, the same graphical evolution with a = 1 and
b = 10 and K = 0.9055 for a potential of 10³ Volts in which the different
stages in the evolution are evident. Below the initial values for the
kinetic energy of 0.4 and 0.9 respectively, the particle does not cross
these potential barriers and it is rejected backwards.

If in both examples the parameter a is ranged from 1 to 0.05, thus
making the left slope sharper, there is no appreciable change in the
crossing energy, so that with a = 1 held fixed we can compute the
minimum crossing kinetic energies for different b values, K c(b).

To compare this model with the quantum tunnel effect, let us quantize
the system. In the quantization of generalized Lagrangians developed
in Chapter 4, the wave function for this system is a squared-integrable
function  ψ (t, r, u), of the seven kinematical variables and the generators
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Figure 6.21. Kinetic Energy during the crossing for the values a = 1, b = 10.

of the Galilei group have the form (see Sec. 2.):

(6.21)

where ∇ is the gradient operator with respect to the u variables. Theseu
generators satisfy the commutation relations of the extended Galilei
group, 19 and the spin operator is given by Z = – i u  × ∇ u.

One Casimir operator of this extended Galilei group is the Galilei
invariant internal energy of the system ε, which in the presence of an
external electromagnetic field and with the minimal coupling prescrip-
tion is written as,

(6.22)

where V and A are the external scalar and vector potentials, respectively.
In our system A = 0, and V is only a function of the x variable.

It turns out that because of the structure of the above operators we
can find simultaneous eigenfunctions of the following observables: the
Casimir operator (6.22), H, Py , Pz , Z ² and Zz . The particle moves
along the OX axis, with the spin pointing in the OZ direction, and we
look for solutions which are eigenfunctions of the above operators in the
form:

(6.23)
(6.24)

so that ψ is independent of y and z, and its time dependence is of the
form exp ( –iEt / ). Since the spin operators produce derivatives only
with respect to the velocity variables, we can look for solutions with the
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(6.28)

variables separated in the form:

and thus

(6.25)

(6.26)

where the spatial part  φ(x ), is uncoupled with the spin part χ ( u), and
E – eV ( x) – ε represents the kinetic energy of the system. The spatial
part satisfies the one-dimensional Schroedinger equation, and the spin
part is independent of the interaction, so that the probability of quantum
tunneling is contained in the spatial part and does not depend on the
particular value of the spin. If the particle is initially on the left-hand
side of the barrier, with an initial kinetic energy E0 = E– ε , then we can
determine the quantum probability for crossing for a = 1 and different
values of the potential width b.

The one-dimensional quantum mechanical problem of the spatial part
for the same one-dimensional potential depicted in Fig. 6.17 is: 20

(6.27)
where x is the same dimensionless position variable as before, and the
constants

Functions Ai(x ) and Bi (x ) are the Airy functions of x. The six integra-
tion constants R, T, and C i , i = 1, 2, 3, 4, can be obtained by assuming
continuity of the functions and their first order derivatives at the sepa-
ration points of the different regions. The coefficient |R| ² represents the
probability of the particle to be reflected by the potential and |T | its
probability of crossing.

Computing the T amplitude for a = 1 and different values of the
potential width b, and for energies below the top of the barrier eV0 , we
show in Fig. 6.22, the average probability for quantum tunneling for
four different potentials V0 of 10 , 10 ³, 104 and 10 5 

there is a uniform distribution of particles of energies below eV0 .

²

² Volts. This average
probability has been computed by assuming that on the left of the barrier
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Figure 6.22. Classical and Quantum Probability of crossing for different potentials.

If we consider for the classical spinning particle the same uniform dis-
tribution of particles, then, the function P( b) = 1 – K c (b), where K c (b) is
the minimum dimensionless kinetic energy for crossing computed before,
represents the ratio of the particles that with kinetic energy below the
top of the potential cross the barrier because of the spin contribution.

This function P(b), is also depicted in Fig. 6.22. We see that for the
different potentials shown in that figure the classical average probability
of crossing is smaller than the quantum one, but for stronger potentials
this classical probability, coming from the spin contribution, becomes
relatively important.

Because the tunnel effect is a function of and the spin of elementary
particles is also of order of it is very difficult to separate from the
outcome of a real experiment involving elementary particles, which part
is due to a pure quantum effect and which is the contribution to crossing
coming from the spin structure. From (6.25) and (6.26) it is clear that
the quantum probability of tunneling is independent of the spin.

To test experimentally this contribution, it will be necessary to per-
form separate experiments with particles of the same mass and charge
but with different values of the spin. Thus, the difference in the outcome
will be related to the spin contribution. This can be accomplished for
instance, by using ions of the type A++ that could be either in a singlet,
(s = 0) state or in a triplet (s = 1) state.

But if there exists a contribution to crossing not included in the usual
quantum mechanical analysis we have to modify the quantum mechani-
cal equations. To be consistent with the above analysis the Schroedinger-
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Pauli equation should be modified to include the additional electric
dipole term. A term of the form –eER cos ωt, where E is the external
electric field and R the radius of the zitterbewegung, should be consid-
ered to solve the corresponding quantum wave function. This term is of
the order of the separation R between the center of mass and center of
charge, which is responsible for the classical crossing. This additional
electric dipole term is already included in Dirac’s equation but is sup-
pressed when taking the low velocity limit, as it corresponds to this low
energy example. Nevertheless, although this is a low energy process and
the time average value of the electric dipole vanishes, there are very high
field gradients.

We see that the separation between the center of mass and center of
charge that gives rise to the spin structure of this particle model justifies
that this system can cross a potential barrier even if its kinetic energy
is below the top of the potential.

2.1 SPIN POLARIZED TUNNELING
I like to point out the following ideas to discuss whether they can

be useful in connection with the interpretation of the magnetoresistance
of polycrystaline films. This is known in the literature as the sp in
polarized tunneling. 21

The main feature of the “classical” spin polarized tunneling we have
seen in the previous section is not a matter of whether tunneling is
classical or not, because this is a nonsense question. Matter at this scale
is interpreted under quantum mechanical rules. But if we use a model
of a classical spinning particle that, when polarized orthogonal to the
direction of motion, produces a crossing that is not predicted by the
Schroedinger-Pauli equation, it means that this quantum mechanical
equation is lacking some term. The coupling term – µ · B, between
the magnetic moment and magnetic field that gives rise to the Pauli
equation, is inherited from Dirac’s electron theory. But Dirac’s equation
also predicts another term – d · E , of the coupling of an instantaneous
electric dipole with the electric field. It is this oscillating electric dipole
term that we believe is lacking in quantum mechanical wave equations.
In general, the average value of this term in an electric field of smooth
variation is zero. But in high intensity fields or in intergranular areas in
which the effective potentials are low, but their gradients could be very
high, this average value should not be negligible.

The conduction of electrons in synterized materials is completely dif-
ferent than the conduction on normal conductors. The material is not a
continuous crystal. It is formed by small grains that are bound together
by the action of some external pressure. If we can depict roughly the
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electric current flow, this is done by the jumping of electrons from grain
to grain, through a tunneling process in which there is some estimated
effective potential barrier confined in the gap between grains. Therefore
these materials show in general a huge resistivity when compared with
true conductors.

The form of this potential is unknown. The simplest one is to assume
a wall of thickness d, the average separation between grains, and height
h. But it can also be estimated as one of the potentials of the former
example. What we have shown previously is that for every potential
barrier, there is always a minimum energy, below the top of the potential,
that electrons above that energy cross with probability 1 when polarized
orthogonal to the motion, even within a classical interpretation. But
this effect is not predicted by “normal” quantum mechanics because
tunneling is spin independent.

Now, let us assume that we are able to estimate some average ef-
fective potential barrier in the intergranular zone of this polycristaline
material. If the corresponding minimum crossing energy of this barrier
for polarized electrons is below the Fermi level, then, when we introduce
a magnetic field in the direction of the film and the magnetic domains in
the grains become polarized, all electrons above that minimum energy
of crossing will flow from grain to grain as in a good conductor, with
a classical probability 1. That’s all. Here the difficulty is to estimate
properly this potential barrier and therefore the corresponding classical
crossing energy.

It can be argued that the presence of the magnetic field to polarize
electrons produces a change in the energy of particles. Nevertheless, even
for a magnetic field of the order of 1 Tesla and in a potential barrier of
1 Volt, the magnetic term – µ · B contributes with an energy of order
of ± 5.7 × 10 –5 eV, which does not modify the quantum probability of
crossing.

3 . QUANTUM MECHANICAL POSITION
OPERATOR

One of the earlier controversies with Dirac’s equation for a free particle
was the disagreement between the direction of the linear momentum
P and the velocity operator u ≡ cα . Dirac himself 22 found that P
was related to some time-average value of u with the usual relativistic
expected relation P = H < u > / c . The search was then oriented to
find the position of a point q such that its velocity was in the direction
of P and P = (H/c ) dq /dt , and that their components qi could be used
as canonical variables.

²

²
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This point q will be interpreted as a generalization of the center of
mass of the particle and its proper definition is important to separate
from the total angular momentum J the orbital angular momentum
L = q × P associated to this point. The remaining angular momentum
S = J – L will be interpreted as the spin of the system. Therefore an
accurate definition of q has associated a definition of spin.

For systems which have a well defined symmetric and conserved energy-
momentum tensor T µv = T vµ , ∂vT µv = 0, Pryce 23 was able to define
three possibilities which we discuss in connection with the definition of
the center of mass of our models.

The conservation of T µv of a classical system implies that the magni-
tudes

are constants of the motion. The above integrals are extended to the
whole three-dimensional space taken at a constant time t. They de-
fine respectively the total four-momentum and total generalized angular
momentum at any time t.

From the classical viewpoint, Pµ and J µv are the generating func-
tions of the infinitesimal Poincaré transformations so that they satisfy
the Poisson bracket relations of the Poincaré group. Because T 00 is con-
sidered as the energy density of the system, the first definition by Pryce
takes the idea of defining a center of energy at a constant time by

where P 0 = H / c. This amounts in terms of the above magnitudes to

(6.29)

This leads to q0 ≡ ct and, because P µ and J µv are conserved, the time
derivative of the spatial part of qµ satisfies P = (H /c )dq/dt .

The spatial part of (6.29) matches with our definition of centre of
mass of a spinning particle, because J i 0 ≡ cK i is our kinematical mo-
mentum and the space-space part J i j is the angular momentum J , a n d
this expression is equivalent to obtaining q from the general expression
of the kinematical momentum

(6.30)

²
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This expression in the case of spinning Bradyons is written in terms of
the charge position r as (see (3.88))

and in the case of Luxous as

as in (3.159), where in both cases the total angular momentum appears
as

Function Z = u × U + W satisfies in the free case the dynamical equation
dZ / dt = P × u and when quantizing the system is the classical equivalent
to Dirac’s spin operator  Σ /2. If we consider that the electron is a
Luxon, the center of mass position q is related to the position of the
charge by

(6.31)

The geometric properties of the definition (6.29) are that qµ does not
transform like a four-vector and, as we saw in Sec. 3.3 of Chapter 3, the
spatial components satisfy the Poisson brackets

(6.32)

and

Therefore they cannot be used as canonical variables.
The spin observable S = J – q × P is a constant of the motion for

the free particle and satisfies the Poisson brackets

It is related with Z b y

(6.33)

The second Pryce attempt was oriented to obtain a covariant defini-
tion. The result is

(6.34)
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It also gives X 0 ≡ ct and P = ( H / c )dX / dt for the free particle, but
for the Poisson bracket of the space components

(6.35)

so that they cannot also be used as canonical variables. For the spatial
part it leads to the expression

(6.36)

in terms of the previous q and S observables. Both definitions coincide
for spinless systems.

To obtain canonical variables we see by inspection of equations (6.32)
and (6.35) that the idea to obtain vanishing Poisson’s brackets, is to
produce a weighted average of the two previous definitions by

Using previous Poisson brackets one gets { } 0, and { Pj }= δ i j .
However in this case observable is not covariant. Using the expression
of X (6.36) this gives the third Pryce definition of a canonical center of
mass

(6.37)

In all the above expressions, observable q should be replaced by (6.31)
whenever we want to express the corresponding position observable in
terms of the charge position. The corresponding spin observable sat-
isfies { } = , and is related to the previous one by

We see that if H, P and S are constants of the motion, is also a
constant of the motion. For all these spin operators we have

and the Pauli-Lubanski four-vector is defined in terms of the S observ-
able as

There is however another possibility pointed out by Bacry 24 in which
an alternative covariant definition of a position observable can be found

²



SPIN FEATURES AND RELATED EFFECTS 283

which fulfills the requirement of having commuting coordinates, although
they cannot be used as canonical variables. In any irreducible represen-
tation of the Poincaré group with generators P µ and J µv , this position
is defined as

(6.38)

It satisfies

For the time and space components and in the classical case in which
products of Pµ and J µv can be taken in any order it reduces to

that always vanish for an observer for which P = K = 0. If we substitute
for K its expression (6.30) and take for J = q × P + S , it is transformed
into

This center of mass definition has the nice property that for a two-

It differs from Pryce’s covariant definition (6.36) in a term along P. This
implies that the orbital angular momentum associated to both X and
Y are the same and therefore it leads to the same spin observable.

particle relativistic system where and
are the total linear and angular momentum of the system, the center of
mass of the system defined according to (6.38) satisfies

The final conclusion seems to be that there is no possibility for find-

canonical variables.

in the particular case when the Pi
µ , i = 1,2, are parallel four-vectors.

ing a relativistically covariant definition that at the same time yields

The need of having canonical coordinates is to produce a canonical
quantization of the model. But canonical quantization is unnecessary if
we have at hand a Lagrangian description as shown in Chapter 4 where
quantization can be directly obtained on the kinematical space. The
first definition of center of mass has the advantage that even in the case
of an interacting particle, in which the interaction does not depend on
the acceleration and angular velocity, as in the usual minimal coupling
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of electrodynamics, the expression of the mechanical linear momentum
P m remains the same as in the free case as

Here H m is the mechanical energy, which is also expressed in terms of
the degrees of freedom and their derivatives as in the free case. Now
dynamical equations for the center of mass motion become

where F is the external Lorentz force, defined at the charge position.
This does not happen for the other definitions when the particle is no
longer free and that is why we consider the first definition, although not
covariant, as the center of mass or center of energy of the particle.

In the quantum case if H = cα · P + m c2β is Dirac’s Hamiltonian,
when acting on one-particle states it satisfies H = ± E , where E =
+ c( m 2c2 + P 2)1/2 .

Total angular momentum in the quantum case is

where d Z /d t = P × c α, for the free particle.
When restricted to positive and negative energy eigenstates the ob-

servables , P, H/E a n d satisfy the same commutation relations as
the observables r, P, β and  Σ/2. The canonical transformation that
links both sets of variables, obtained first by Pryce, is known in the lit-
erature as the Foldy-Wouthuysen transformation. 2 5 The basic feature
of this transformation is that it takes positive (negative) energy states
into positive (negative) energy states, respectively.

This classical position operator can be written as

(6.39)

where we have to replace S by its expression (6.33) and finally in the
above formula the following observables by their quantum mechanical
equivalents

This position becomes in the Pryce-Foldy-Wouthuysen representation
(PFW for short)
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This representation is
given by

generated by the unitary operator eiS which is

If we transform the angular momentum with the PFW transformation
we get

Both,    × P and   , are separately constants of the motion for the free
particle. Foldy and Wouthuysen call the mean spin operator. Po-
sition operator    also fits with the Newton-Wigner position operator 26

for spin 1/2 particles. Therefore the PFW transformation is that one
which changes the spatial argument r of Dirac’s spinor   (t, r ), and thus
the position of the charge, for the variables

Bunge 27  also proposed another position operator that looks like the
first two terms of ,

with λ = / mc is Compton’s wave-length, and   γ ≡ βα, so that in the
center of mass frame P = 0 and E = m c 2, and = q B  = q .

We can see that in both Pauli-Dirac and Weyl representations, Dirac’s
matrices become

and according to the interpretation we gave for the body frame in Section
4.3 of Chapter 4, this amounts to 3e 2  = i γ in the sense that vector
operator 3e2 plays the role of a unit vector directed from the charge to
the center of mass and  λ = 2R, where R is the radius of the trajectory
of the charge. Then, the relative position vector k = – R iγ, so that
q B = r – k.

However the velocity dq B /dt is not a constant of the motion even for
the free particle and the additional terms in either q or  are needed to
properly define the position of a point whose motion is along P.

4 . FINSLER STRUCTURE OF
KINEMATICAL SPACE

Let X be a given manifold. The tangent bundle of X, represented
by TX, consists of the manifold X together with all its possible tangent
vectors at every point. Let us define on this manifold a real function
L which, to the pair (x,y) ∈ TX, associates the real number L (x,y).
Variables y are the components of a tangent vector to the manifold ati

point x .
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Among the possible functions L that can be defined on TX, we shall
restrict ourselves to positive homogeneous functions of first degree in the
variables y, i.e .,:

In this case, taking the derivative of both sides with respect to k,

with z = ky, and taking k = 1,

Similarly L 2 x, ky ) = k 2L2 x , y and if we differentiate twice with
respect to k and make k = 1 again, we get:

and therefore L2 has the form of a quadratic form in the variables y ,i

where the coefficients are functions of x and y, such that it can be written
as:

If we consider in the manifold X, a trajectory x ) and the two close
points x ) and x + ), and multiply (6.43) by (

(6.44)

for k > 0. (6.40)

(6.41)

( ( ),

(6.42)

(6.43)

(
( ( d d )2 ,

so that the function g (i j x, y ) defined on TX, can be interpreted as a
generalized metric of the manifold X, provided some invariant proper-
ties are required for L. This metric depends not only on the point x but
also on the direction y along the path. Then L d is just the distance
between the two points.

Definition: A manifold X with a metric g ( ) that comes fromi j x, y
a real positive homogeneous function defined on TX, L (x, y ), of
first degree in the y variables, is called a Finsler Space. 28

This is the case of the invariant Lagrangian functions that define clas-
sical elementary particles, when considered written in terms of the kine-
matical variables and their derivatives, and thus, the kinematical space
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of a generalized Lagrangian system can be transformed into a Finsler
space, and the path integral of Ld is the length of the trajectory in X -
space. As we shall see, the classical trajectories in X-space, are geodesics
of the Finsler space X .

4.1 PROPERTIES OF THE METRIC
The components of the tangent vector y transform like the contravari-

ant components of a vector on the manifold X . If the function L (x, y )
is invariant under transformations of X space that can be extended to
T X , then the functions transform like the covariant
components of a vector on X,

The metric gi j (x, y ) is thus a symmetric covariant second-rank tensor
on the manifold X , such that under arbitrary changes of coordinates on
X , x ′ = x′ (x ) transforms according to

(6.45)

We can define the covariant components of the tangent vector y with
the use of the metric tensor by , and since
and it implies that
Because , L represents the absolute value of the tangent vec-
tor, and are the covariant components of the unit
tangent vector.

If we differentiate yj  with respect to yi we get:

The magnitudes g ij (x, y) defined by transform
like the contravariant components of a second-rank tensor on X, and
therefore we can use g ij (x, y ) and gij (x, y) for rising and lowering indexes
of tensor magnitudes on X, as in Riemannian metric spaces.

If the metric tensor g i j( x, y) is independent of y, then the Finsler space
X becomes a Riemann space, and in that case the symmetric covariant
tensor of third rank C ijk ( x, y), defined by

(6.46)
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which is called Cartan’s torsion tensor, vanishes identically. The Rie-
mann spaces are manifolds with a connection that comes from a metric
that is independent of the tangent vector y , and in consequence, they
are torsion-free spaces.

Since the metric tensor is a homogeneous function of zero degree in
the variables y, then Euler’s theorem on homogeneous functions, implies:

and the symmetric tensor satisfies:

Another interesting tensor is the symmetric tensor hi j (x,y):

(6.47)

which is a homogeneous function of zero degree in the variables yj , and
is denoted as the angular metric tensor, in the sense that it comes from
gij by the subtraction of the tensor constructed with the components of
the unit vector Fi  and F j .

Since Fi = y i/L, taking the derivative with respect to yj , it gives:

i.e.,

If we use the condition that Fi  is a homogeneous function of zero degree
of y j, then

and

where N is the dimension of the manifold X.

4.2 GEODESICS ON FINSLER SPACE
Given the manifold X , the distance between two points x1 and x 2 i s

defined as the minimum value of the functional
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along a curve C joining the two fixed points x1 and x 2 , since L ( x, dx) =
ds, is the arc length between the points x and x + dx. If the curve C is
parametrized in terms of a parameter , then this integral is independent
of the path parameter. It can be written as

The geodesics joining x1with x 2 are curves on X that satisfy Euler-
Lagrange’s equations:

(6.48)

Because

and also it gives

(6.49)

and substituted in (6.48) and after multiplying the result by L ( x , ) it
leads to:

After contraction with g li  (x, ), it gives:

where are the Finslerian Christoffel symbols, that define
the connection on X-space. They are expressed in terms of the metric
in the same form as in the case of a Riemann space:

(6.50)

If we choose as a path parameter the arc length, then the tangent
vector  is of unit length, i.e., L (x, ) = 1, and ln L = 0, and the
equations of geodesics become

(6.51)
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The Christoffel symbols Γ l
j k , are not tensor magnitudes and trans-

form in a different way than in the case of a Riemann space under a
change of coordinates of the manifold X. However, equations (6.51)
keep the same form under these transformations.

4.3 EXAMPLES
The pointlike nonrelativistic particle has a kinematical space spanned

by the variables x µ ≡  (t, r ), µ  = 0,1,2,3, and L = m 2/2  If considered
as a Finsler space, the metric should be:

Nevertheless, in the Galilei case the Lagrangian is not invariant under
Galilei transformations and therefore is not invariant under arbitrary
transformations. It turns out that the above quantities g µv do not trans-
form like the components of a tensor. We have no Finsler structure in
this case.

For the point like relativistic particle the kinematical variables are also

x µ ≡ ( ct, r ) and L = –mc      , the kinematical space is a Finsler
space thus giving rise to a metric 

where η   ≡  diag(1, –1,µv –1, –1) is Minkowski’s metric tensor. In this
particular case, the metric is independent of the tangent vector The
Finsler metric in this case is in fact a Riemannian metric. For spinless
particles the metric is not direction dependent and thus the kinematical
space is a flat Riemann space.

The metric transforms as a second rank covariant tensor under the
changes of coordinates of the kinematical space X when restricted to
Poincaré transformations, and because its components are independent
of the coordinates and their derivatives it transforms like a tensor under
arbitrary transformations.

General Relativity is the extension of a free point particle with a flat
kinematical space X to a general kinematical space endowed with a Rie-
mann metric g µ v (x). These metric coefficients are in general functions of
the space-time point x and are interpreted as the potentials that produce
the gravitational effects on the particle, such that a freely falling particle
in this gravitational background follows a geodesic in this space. The
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source of the gravitational field is the energy-momentum tensor T ,µv

such that the metric satisfies Einstein’s equations

(6.52)

Einstein’s tensor G µv is written in terms of Ricci tensor R µ v and the
curvature scalar as and G is Newton’s
gravitational constant. The Ricci tensor is a contraction of the Riemann-
Christoffel curvature tensor by  which is written in
terms of the first and second derivatives of gµ v in the form:

where the Riemann-Christoffel symbols    Γµ v  
λ are expressed in terms of the

metric by the same expression as in the Finsler space (6.50). Einstein’s
equations (6.52) when solved in terms of the unknowns g µ v will give
us the metric of the kinematical space of our point particle system in
the presence of gravitation. In T µv are included all contributions of
the external matter and fields and also the contribution of the energy-
momentum of our point particle.

In the relativistic case, Lagrangians for elementary spinning particles
are invariant under the Poincaré group P. But their kinematical space
is larger than the space-time manifold of our point particle. Even the
Finsler metric coefficients for a free spinning particle also depend on
the derivatives of the kinematical variables. Therefore the natural gen-
eralization to introduce gravitation for spinning particles is to consider
that the kinematical space of our material system X is in fact a Finsler
space endowed with a general metric gµ v (x , ) that will differ from the
one of a free particle to take into account the gravitational effects, and
that depends on both x and   . We thus see that the presence of spin
establishes a direction dependent force thus confirming the idea that
if we have gravitational effects related to the spin structure, then, the
gravitational force will be direction dependent. 2 9

This is consistent with the usual treatment of spin in General Relativ-
ity produced by Papapetrou et. al. in which they show that the orbits
of spinning particles will differ from the geodesics on space-time. 30 As
we have seen they are in fact geodesics on a larger manifold where the
metric is direction dependent.

5 . EXTENDING THE KINEMATICAL
GROUP

We started in Sec. 11. of the first chapter by considering first the
space-time translation group { , +} as the kinematical group to imple-
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ment the Special Relativity Principle. Later we increased the complex-
ity of the group by considering new transformations like rotations and
boosts, and arrived at the Galilei and Poincaré groups, where nonrela-
tivistic and relativistic models of elementary particles, respectively, were
worked out.

Is this the end of the story? Clearly not. Once we increased the
number of parameters of the kinematical group, more and more classical
variables were available to describe new degrees of freedom and conse-
quently elementary objects of a more complex structure arose. Even
more, when the number of classical variables grows, we have the chance
to try new transformations involving these new variables, thus increasing
the number of parameters of the symmetry group.

Particle physicists consider that to describe hadronic matter, besides
the Poincaré group, some kind of internal kinematical group of the SU (n )
type is necessary to define new internal observables, like isospin, hyper-
charge and many others, that arise in high energy interactions.

We shall consider next the possibility of enlarging the Galilei and
Poincaré groups by defining new space-time transformations like dila-
tions, local rotations and local Lorentz transformations. In the next
section we shall enlarge the Poincaré group to the Conformal group of
Minkowski space-time.

5 1. SPACE-TIME DILATIONS
Space-time dilations act on the kinematical variables and their deriva-

tives in the form

Any group element of this Abelian one-parameter group is characterized
by the normal parameter λ . The neutral element is given by  λ = 0, and
the composition law is λ″  = λ′ + λ .

Translation invariant Lagrangians whose dependence on and i s
only through the dependence on the velocity are also invariant.
Terms of either form or are invariant. In the relativistic
case, the Poincaré invariant terms α 2  – ω2 and α · ω , given in (3.95)
and (3.96), respectively, are also dilation invariant. However terms of
the form transform with a constant factor so that for instance
the point particle relativistic Lagrangian is not invariant but transforms
with a global factor and therefore the dynamical equations, for the free
point particle, remain invariant.

The Bradyons described by Lagrangians (3.97) and (3.98) are not in-
variant under dilations. For Luxons we shall analyze their invariance
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under the more general conformal transformations in the next section,
but the photon Lagrangian (3.151) is invariant under dilations and the
possible Lagrangian terms in (3.176) are invariant, while those in (3.177)
transform with a constant global factor because of their explicit depen-
dence on the variable

If a Lagrangian is invariant under this group, an infinitesimal transfor-
mation of dimensionless parameter δλ produces the variations δt = t δλ
and δr = rδλ  and thus Noether’s theorem defines the following constant
of the motion

(6.53)

with dimensions of action. Taking the  -derivative of this expression
this yields H = P · u , as it happens in the case of massless Luxons, as
for the photon, but not for the electron. This suggests that if we assume
dilation invariance for massive Luxons, then necessarily the Lagrangian
must depend on some additional kinematical variables that also trans-
form under this group, to obtain on the right-hand side of (6.53) more
additional terms.

5.2. LOCAL ROTATIONS
Let us consider, for instance, what happens if we think about the

possibility of rotating the local frame attached to the particle without
modifying the remaining kinematical variables. This means that we have
in addition to  G or P a new three-parameter group of transformations of
the kinematical variables, isomorphic to the rotation group but restricted
in its action to only the orientation variables. Let us represent by R (v)
one of these transformations. Then the kinematical variables and their
derivatives transform under this local S O(3), or S O (3) L for short, of
parameter v in the form:

Nonrelativistic Lagrangians constructed from terms of the form ω · 
which are invariant under rotations are no longer invariant under these
local rotations, because ω rotates but does not. Therefore, require-
ment of invariance of dynamical equations under a local SO(3)L rejects
terms of the above form thus restricting the free Lagrangians to depend
only on terms of the form

Let us assume that our Lagrangian is of the above invariant form.
Once we have a new invariance group we can define the correspond-
ing Noether’s constants of the motion. In this case the three new con-

a n d
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[I, I] = I,

[I, H] = [I, P] = [I, K ] = 0 [I, J] = I,

[I,  K ]  =  –K ,  [I,  J ] =  I.

stants of the motion define a vector magnitude I we shall call the I-spin,
which for both nonrelativistic and relativistic systems reduces to the
magnitude W ≡ ∂L / ∂ω. In fact it is a constant of the motion, be-
cause if the dependence of the Lagrangian on the orientation variables
is only through ω2 terms, then W ~ ω and its dynamical equations are
dW / dt = ω × W = 0, as we have seen in previous chapters.

The new generators of the enlarged kinematical group, I, satisfy in
addition to the commutation relations of SO (3)L ,

the commutation relations with the old generators of the Galilei group

so that they are invariant under translations and Galilei boosts and
transform like vectors under rotations.

For the relativistic case they no longer commute with the K but they
satisfy

5.3 LOCAL LORENTZ TRANSFORMATIONS
As seen above, local rotations amount to rotating the local frame, or

triad, associated to the particle. We can extend this, in the relativistic
case, to the rotation of the local tetrad associated to the particle, without
modifying the space-time variables. Thus, in addition to the Poincaré
group, we have a local Lorentz group L L of transformations acting only
on the local tetrad eα . But this looks like a gauge group in field theory,
where to describe interactions it is assumed that the total Lagrangian
density must be invariant under a local transformation group. This
gauge group is a set of transformations that transform the phase of the
fields without changing the space-time coordinates.

However, this gauge group cannot be considered as a kinematical
group because in general the free Lagrangian is not invariant under its
transformations. It is the whole Lagrangian, with the inclusion of the ad-
ditional gauge fields that mediate in between the interaction, which has
to be invariant. Therefore, in field theory, what we have is a dynamical
symmetry that restricts the possible interaction terms.

Whether or not the above discussion about local groups can be inter-
preted as a dynamical or kinematical symmetry is an important subject
that deserves more work. If it is a kinematical symmetry we can explore
the additional group parameters to use them as additional kinematical
variables. These will give rise to new degrees of freedom to be used
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to explore new physical properties. But if it is a dynamical symmetry,
then no additional degrees of freedom are necessary, but it produces
a constraint on the possible interaction terms to be considered in the
Lagrangian.

We shall not explore these possibilities any longer in this book, but it
can be taken as a plausible conjecture for future work.

6. CONFORMAL INVARIANCE
In this section we shall consider the Conformal group as a plausible

extension of the Poincaré group, because it has played a historical role in
connection with electromagnetism. Conformal invariance of Maxwell’s
equations has been known since the early days of this century, 31 so that
we shall briefly review next the Conformal group structure and analyze
the conformal invariance of the proposed models for the photon and
electron, when considered as a kinematical group.

6.1 CONFORMAL GROUP
In a metric space the angle θ between two curves, intersecting at a

point, is given by

(6.54)

The differential elements dxµ and dy µ , respectively, are the correspond-
ing coordinates of the arc elements of the two curves. A transformation
of the space that preserves the angles between intersecting curves is
named a conformal transformation.

Let us consider the mapping from the Euclidean plane into the unit
sphere given by the stereographic projection. This application preserves
the angles between two intersecting curves in the plane and their corre-
sponding images on the unit sphere. If we now rotate this unit sphere,
this rotation induces back a transformation of the points of the plane,
in general non-linear, that also preserves the angles between the above
curves. It turns out that the whole rotation group SO(3) when acting
on this sphere is also a group of conformal transformations of our ini-
tial Euclidean plane. Therefore the SO (3) group is a subgroup of the
Conformal group of flat two-dimensional space.

Let us consider those transformations of Minkowski space-time such
that

(6.55)

where Ω (x)2 is a global factor. Then, according to (6.54), angles be-
tween curves in Minkowski space are conserved, and the transformation
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is a conformal transformation. These are examples of conformal trans-
formations.

If we have a pseudometric manifold p+q , with metric of signature
(p, q), with p space-like variables and q time-like, i.e., the differential arc
element can be written in the form

(6.56)

then, the group of inhomogeneous linear transformations ISO(p, q), in-
cluding translations and pseudo-orthogonal transformations, preserves
the metric and therefore is a group of conformal transformations of the
manifold. But, what is the largest connected group of conformal trans-
formations of a metric space? It can be shown 32 that the Conformal
Group of this manifold is the pseudo-orthogonal group of a manifold
of larger dimension, one more dimension in each kind of variables, i.e.,
the group SO (p + 1, q + 1). According to this the conformal group of
the plane, considered as the Euclidean plane of signature (2, 0), will be
SO(3, 1), and the conformal group of Minkowski space-time, with metric
of signature (3, 1), is the group SO(4,2).

The proof is based on the generalized stereographic projection on a
larger pseudo-metric space. We start with a manifold p+q and we go
into a new space (p+1) + ( q+1) . We map every point of the initial space
of coordinates xµ onto a point on the null cone of the second manifold
of coordinates za ≡ ( u, ( u – v)x µ , v), with one new space-like variable u
and another v, time-like, and therefore the norm of the image point is

If we choose

where and respectively, and
therefore these two conditions define in the new space
of dimension p + q + 2, a submanifold of dimension p + q homeomorphic
to the initial space. The group SO (p + 1, q + 1) maps this submanifold
on itself and therefore preserves the angles between curves.

Among the transformations of this group we find those of the form

(6.57)

with R ∈ S O(p, q), that corresponds to the application
with x ′ = Rx, and therefore But also

of the form

(6.58)
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(6.63)

where is the (p + q ) × (p + q ) unit matrix, and corresponds to

(6.59)

(6.60)

(6.61)

that map the point x µ  on the point x′ µ , i.e.,

(6.62)

It is the group of dilations of the original space, with normal (or canon-
ical) parameter λ. The transformations of the form

correspond to

(6.64)

(6.65)

and therefore the image of point xµ is the point

(6.66)

(6.67)

i.e., is the group of translations of normal parameters a . Finally, theµ

transformations

(6.68)

correspond to

(6.69)

(6.70)

(6.71)
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The transformed point of xµ is

but, since

it gives and the
image is the point

(6.72)

These nonlinear transformations, are called pure conformal transfor-
mations. Parameters b µ , are normal or canonical parameters because
as we can easily check R(a)R(b) = R (a + b ).

6 2. CONFORMAL GROUP OF MINKOWSKI
SPACE

The Conformal group is the group of transformations that leave invari-
ant Maxwell’s equations in empty space. Then they leave invariant the
null path of a photon, ds2 ≡ ( d x0 )2 – dr2 = 0, and also the differential
path of the charge of the electron (see Sec. 4.2).

Since the Poincaré group leaves invariant the arc (ds)2 , it is a sub-
group of the Conformal group. It contains the space-time translations,
of infinitesimal generators Pµ , and Lorentz transformations of generators

The linear transformation of dimensionless parameter λ,

gives rise to

and therefore these transformations generate a one-parameter subgroup,
the subgroup of space-time dilations. The infinitesimal generator is

(6.73)

The non-linear transformation of normal parameter a ,µ

(6.74)
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where we have written a · x ≡ aµxµ and a 2 ≡ a µ a µ , is a pure Conformal
transformation. If we call N = 1 – 2a · x + a2x 2 , then (x')2 = x2 /N. I f
the transformation is infinitesimal, it can be expanded to first order in
the group parameters

and for the infinitesimal arc element

and if (dx) 2 = 0, then also (dx') 2 = 0. The neutral element corresponds
to a = 0, and the infinitesimal generators Rµ , are given by

(6.75)

that commute among themselves and together with D and the gener-
ators of the Poincaré group, lead to the commutation relations of the
Conformal group C a s

(6.76)

(6.77)

(6.78)

(6.79)

It is a 15 parameter group that is locally isomorphic to the groups
SU(2, 2) and SO(4, 2).

From the point of view of SO(4, 2), if we consider Minkowski space-
time with coordinates x0 = ct, x i , i = 1, 2, 3, and we enlarge this space by
considering two new variables, one space-like coordinate x4 and another
time-like x5, the metric on this manifold is G = diag(1, –1, –1, –1, –1, 1),
i.e., g00  = g55  = 1, gii  = – 1, i = 1, . . . , 4, and the remaining gij vanish-

ing, then the 15 infinitesimal generators take the form

and satisfy the commutation relations of SO(4, 2),

A matrix representation of these relations is

(6.80)

(6.81)

(6.82)
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where c is the row index and d the column index.
If as usual we reserve Greek indices µ = 0, 1, 2, 3 for the Minkowski

space-time part, then we identify the Lorentz group generators with the
corresponding Jµv with µ, v = 0, 1, 2, 3. Let us set
J0i , D = J45 and Aµ = Jµ 4 and Bµ = Jµ 5 . If we define Pµ = Aµ + Bµ

and Rµ = Aµ – Bµ , we obtain the above commutation relations and
we thus check the local isomorphism between the Conformal group and
SO(4, 2).

From the matrix point of view we can write:

(6.83)

(6.84)

(6.85)

where is a 4 × 4 unit matrix. The matrix representation of the different
generators takes the form:
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where the dots should be replaced by zeroes, and where we have chosen
the first four rows and columns as the corresponding ones of the usual
Minkowski space-time. The remaining generators are

where their infinitesimal transformations affect the other two additional
dimensions.

We can easily check that they satisfy the commutation relations:

[J, J] = –J, [J, K] = –K , [J, P] = –P, [J, R] = –R, [K , K] = J,

[D, J] = [D, K] = 0, [D, Pµ ] = –Pµ , [D, Rµ ] = Rµ , [P0 , R0 ] = –2D,
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In the case of the group SU(2, 2), it leaves invariant on the space
a quadratic form defined by means of the metric G =diag(1, 1, –1, –1).
If an arbitrary infinitesimal transformation is written in the form A =

+ ∈ M, with ∈ the infinitesimal group parameter, the invariance leads to
A†GA = G, and in terms of the generators M †G + GM = 0, and since
G 2 = , it implies M † = –GMG, and if we assume that M matrices are
written in 2 × 2 blocks of the form

it gives rise to

Trace (6.86)

The four-dimensional representation of this Lie algebra is spanned by 15
traceless 4 × 4 matrices. We can choose as a basis of the Lie algebra the
following: Seven skewhermitian matrices

(6.87)

and eight hermitian

(6.88)

(6.89)

If we define as in the previous case of S O(4, 2), the matrices Pµ =
Aµ + Bµ and  Rµ = Aµ – B µ , the 15 matrices J, K, D, Pµ and  R µ

satisfy the commutation relations of the Lie algebra of SU(2, 2) which
is isomorphic to that of SO(4, 2).

If in the case of Dirac’s algebra (see Sec. 4.4 of Chapter 4) we take
  = 1, then we can relate the 15 traceless matrices with the 15 generators
of the Conformal group in the form:

(6.90)

(6.91)
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In this way

(6.92)

(6.93)

Dirac, 33 obtains the following representation of the Lie algebra of the
Conformal group. He denotes by this set of
six matrices and by = 0 ,1 ,2 ,3 ,4 , 5, the
same set except the last matrix that is taken of opposite sign, and since
γ matrices anticommute, then the 15 magnitudes
satisfy the commutation rules of SU(2,2). If we work in the Pauli-Dirac
representation, and as before we define
and then

(6.94)

(6.95)

(6.96)

(6.97)

(6.98)

similar to the previous one.
In the Weyl representation we get

such that

(6.99)

(6.100)

In any of these representations, the generator D = γ5 , and there-
fore the infinitesimal generator of dilations is related to the chirality
operator γ5 = γ0 γ1γ2γ .3



304 KINEMATICAL THEORY OF SPINNING PARTICLES

6.3 CONFORMAL OBSERVABLES OF THE
P H O T O N

Since the Poincaré group P is a subgroup of the Conformal group C
and the manifold spanned by the variables (t, r, u, ρ) with u = c, w h i c h
describes the kinematical variables of Luxons, is a homogeneous space
of P, it is also a homogeneous space of C. Let us consider first the case
of photons which are described by the same kinematical space manifold,
but now considered as a homogeneous space of C.

Under space-time dilations orientation variables are not affected and
thus, the transformation of the kinematical variables and their deriva-
tives is

Therefore the photon Lagrangian (3.151) is invariant under this one-
parameter group of transformations. Then, since parameter λ is dimen-
sionless, Noether’s theorem defines a new constant of the motion D, with
dimensions of action.

(6.101)

and if we use the expressions of these observables for the photon we get

(6.102)

where ω is the angular velocity of the photon and k the wave number.
We can identify the observable D with the Lorentz invariant internal
action. It is equal to times the Lorentz invariant internal phase of the
photon.

From = 0 we get again H = P · u, the relation between the energy
and linear momentum.

Under pure conformal transformations the velocity of the photon is
conserved, and the angular variables, and thus the angular velocity ω,
remain invariant. Invariance of the Lagrangian under these transforma-
tions produce the following constants of the motion

(6.103)

If we set Q ≡ R 0 , it takes the form

(6.104)

and = 0, since = 0, it gives

(6.105)
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i.e., D = tH – r · P, the expression of observable D. The remaining
three are written as

(6.106)

and   = 0 gives rise to

(6.107)

which shows the linear relationship between the linear momentum and
the velocity of the photon. Substitution of P = Hu/c 2 brings again the
definition of D.

If at time t = 0 the photon bursts from the origin of the reference
frame r(0) = 0, then all these constant observables take the value D =
R µ = 0.

6 .4 CONFORMAL OBSERVABLES OF THE
ELECTRON

Let us consider only the Poincaré group enlarged with space-time
dilations. An element of this group is parametrized by (g, λ ), where
by g we mean the usual parametrization of P, and λ the new dimen-
sionless normal group parameter of the new transformations. Let us
consider then the homogeneous space of this group spanned by the vari-
ables (t, r, u, ρ, α ), with u = c, and therefore (t, r, u, ρ) is a point of the
previously considered kinematical space of the electron and α the new
dimensionless variable that describes a new degree of freedom of this
system, as suggested in Sec. 5.1. Therefore, the Lagrangian will also
show, in general, dependence on α and  Under a transformation of
parameter λ , the kinematical variables and their derivatives transform

If the free Lagrangian is independent of t, r and α , and the dependence
on and is only through variable u = / , then, it is invariant under
this transformation and the corresponding conserved observable takes
the form:

(6.108)

where the term D = ∂ L /∂ , comes from the dependence of the La-
grangian on the derivative of the new degree of freedom This term is
necessarily nonvanishing, because = 0 leads to

(6.109)

as:
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and compared with Dirac’s Hamiltonian, the last term is identified with

(6.110)

When analyzed in the center of mass frame and in the Pauli-Dirac rep-
resentation, du/dt × u ~ e 3 and this observable becomes

(6.111)

where ω = c /R0 is the zitterbewegung frequency and in terms of β
Dirac’s matrix.

The important feature is that if we consider that our system has
as kinematical space a homogeneous space of the enlarged group, then
necessarily the Lagrangian has to depend on this new degree of freedom
α  and its derivative Otherwise, if the variable α is not considered
as a kinematical variable, the conserved quantity D will be of the form
D = tH – r · P and this leads to contradictions when compared with
Dirac’s Hamiltonian.

Integration of (6.111) in the center of mass frame yields

Then observable D looks like the action, or some internal phase in units
of of the internal motion of the charge, in the positive or negative
sense according to the particle or antiparticle state we consider.

Under more general conformal transformations, we need the knowl-
edge of the explicit Lagrangian to see how it transforms in order to apply
Noether’s theorem properly.

In this way if we consider that the electron symmetry group is the
complete group C, then necessarily the kinematical space must contain,
at least, the additional variable α that describes some internal phase.

7 . CLASSICAL LIMIT OF QUANTUM
MECHANICS

This is a controversial subject in the sense that to what extent two
different formalisms can be related in some peculiar manner. Because we
have at hand a more detailed classical description of elementary particles
we produce an alternative interpretation of this subject.

One often reads in textbooks on quantum mechanics that Classical
Mechanics (CM) is the limit → 0 of Quantum Mechanics (QM). 34, 35,

36, 37 Of course there are exceptions. For instance in Feynman’s Lectures
on Physics 38 we read: ‘In the classical limit, the quantum mechanics
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will agree with Newtonian Mechanics’. Both expressions are equivalent
if by CM we understand the classical mechanics of spinless (or point)
particles, i.e., Newtonian Mechanics. We think this is the meaning the
mentioned authors try to express. But the first statement as it stands,
might lead to wrong interpretations if considered literally, as some of
the quoted references might suggest. In order to clarify this idea of the
classical limit of QM, let us consider the following simplified diagram of
Fig. 6.23.

Figure 6.23. Classical Limit of Quantum Mechanics.

The set A represents the whole body of knowledge of CM which in-
cludes two subsets, the subset (s = 0) or domain of spinless particles or
Newtonian Mechanics and the subset (s ≠ 0) of spinning particles. If
we restrict CM to satisfy the additional requirement of the Uncertainty
Principle we enter into the more restricted body of knowledge of QM,
represented by the smaller set B in which we also have the two sub-
domains of spinless and spinning particles. If in this more constrained
domain we perform now the additional restriction of taking the limit

→ 0 it is doubtful that after these two restrictions we shall reach the
wider and less restrictive domain of the whole CM.

In QM we have that the measurement of any two observables C and D
is not in general compatible, and the uncertainty in their simultaneous
measurement is related to its commutator [C, D] which is of order of
Planck’s constant But we also have in QM that the particle states sat-
isfy eigenvalue equations for the spin of the form
where the right-hand side is also a function of It turns out that when
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performing the limit →  0 we get [C, D] = 0 and also S 2 |ψ   >= 0, i.e.,
the physics of compatible observables of spinless systems.

With this analysis we see that the limit → 0 of QM is in fact
closer to Newtonian Mechanics and not to the whole domain of CM.
Perhaps one of the reasons for the identification of CM with Newtonian
Mechanics in the mentioned references lies in the fact that since the early
days of the quantum theory we are used to work in QM with spinning
systems, while the CM of spinning particles is still waiting for a complete
development and improvement at least equivalent to the one we have
achieved in the quantum domain. Even we can remember here that for
many years, spin has been considered by physicists a strict quantum
mechanical and relativistic property of the electron, as was pointed out
by Levy-Leblond’s detailed account 39 where the relevant references on
this matter can be found. It is not strange that the recent history of
physics had forgotten and considered unexistent the (s ≠ 0) region of
CM.

The spin is neither relativistic nor a quantum mechanical property of
the electron. The only quantum mechanical aspect of the electron spin
is that it is quantized and that it is not possible to measure any two
of its components simultaneously. The classical explanation of spin has
been the challenge to produce this book.

For example, the nonrelativistic Lagrangians analyzed in Chapter 2

and

the magnitudes ω = 2mc2 / and I = m R 0
2 , R 0 = /2mc, are related

to Plank's constant In the limit → 0, both Lagrangians have as a
limit the point-like Newtonian particle. Similarly we get the same limit
for the most general non-relativistic spinning particle (2.135).

For the relativistic Lagrangians (3.97) and (3.98) the same thing hap-
pens, that in the limit S ~ →  0 both systems transform in the point-
like relativistic particle. Parameter b in Lagrangians (3.107) and (3.108)
is b ~ 2 , and thus vanishes in the proposed limit. The photonic La-
grangian

→ 0 isvanishes in the limit S ≡ → 0. In all cases, taking the limit
equivalent to suppressing the spin content of the system.
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Epilogue

This is a book about spin. In these pages we have explored a new

things, a classical description of spin.

This new look at the subject has depicted a clear picture of the zit-
terbewegung, thus justifying on classical grounds the dipole properties
of charged spinning particles. The price paid for it is that classical ele-
mentary particles look like extended objects. But, nevertheless, it is not
necessary to talk about macroscopic properties like shape or size, and
the analytical description is done in terms of positions and velocities.

To describe the evolution of a particle we have to distinguish between
two points, the center of mass and the center of charge. The center of

formalism for elementary particle physics that produces, among other

charge is that point where the values of the external fields are computed
to produce Newton-like dynamical equations for the center of mass. The
above field values are used to determine the total external force which
gives rise to the variation of the mechanical linear momentum. The
motion of the center of charge around the center of mass is a gener-
alization, in the relativistic case, of an isotropic harmonic motion. In
addition to this we also need to describe the evolution of the orienta-
tion of the system which seems to play no role in the electromagnetic
dipole structure but contributes to the total spin. This partially gives
an answer to Professor Barut’s quotation at the beginning of the book.

The definition of spin is related to a proper definition of the center of
mass, which can be defined accurately for a single particle, although its
definition for a compound system is not free from difficulties. The center
of mass position of a particle, very well defined for every inertial observer,
cannot be described in terms of a canonical covariant four-vector.

The structure of the spin observable is twofold. One part is related
to the zitterbewegung, and thus to the separation between the center of
mass and center of charge, and another that comes from the rotation
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of the particle. The first part gives rise to a spin of an (anti)orbital
type in the sense that it has the direction opposite to the expected
orbital angular momentum of a moving point. It is directly related to
the magnetic moment of the particle produced by the motion of the
charge and always quantizes with integer values. The spin 1/2 part of a
fermionic system comes from the second contribution due to the rotation
of the particle as a whole, as in the case of a rigid body. Mechanical
experiments devised to measure the spin of the particle are not able
to separate the two parts and, therefore, when expressing the magnetic
moment of the particle in terms of the total spin, this introduces the
concept of gyromagnetic ratio.

A charged elementary spinning particle can be interpreted as a first
order approximation, as a point (the center of mass) in which we locate
the scalar properties mass m and charge e. We also locate at this point
a magnetic moment µ, as an intrinsic property, of the same value as
the classical magnetic moment associated to the motion of the center of
charge around the center of mass. In addition to this, the particle has
an instantaneous electric dipole d which is oscillating with the zitterbe-
wegung frequency in a plane orthogonal to the spin. Its magnitude is
the product of the charge times the radius of the zitterbewegung, which
for the electron is just half Compton’s wave length. The presence of this
instantaneous electric dipole has proven to explain the Darwin term of
Dirac’s equation and produces also a measurable classical contribution
to the crossing of a potential barrier. This approximate model is suffi-
cient for a low energy analysis, but in high energy physics or for instance
a very close electron-electron interaction, the exact positions of the cen-
ter of charge and mass of both particles are necessary to properly state
and solve dynamical equations.

The quantum mechanical formalism shows that it is not necessary
to base quantization upon a previous classical canonical formalism. A
Lagrangian formalism, the special relativity principle associated to a spe-
cific kinematical group, together with Feynman’s quantization method,
are sufficient to produce the quantum scenario in which spin, and many
other observables, are obtained by group theoretical methods. But in
order to obtain a classical dynamical description in terms of end points,
and therefore formally closer to quantum dynamics, we have worked out
a Lagrangian approach where the important variables are the end-point
variables, called kinematical variables here. The only restriction we pro-
posed for the kinematical variables is that they must lie on a homoge-
neous space of the kinematical group of symmetries if they are going to
describe an elementary particle. To achieve this goal, one of the usual
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assumptions of Lagrangian mechanics has been withdrawn: Lagrangians
are allowed to depend, in general, on higher order derivatives.

This has been the main reason for the revisited generalized Lagrangian
formalism developed in the first chapter, where the definition of classi-
cal elementary particle is stated. The dependence of the Lagrangian on
higher order derivatives and the explicit construction of the different ob-
servables as functions of the kinematical variables, are the features that
distinguish this approach from previous ones. This becomes more evi-
dent when we compare the formalism with the other models of spinning
particles, discussed in Chapter 5.

The whole formalism is a group theoretical one and it goes very close
to the standard quantum mechanics of one-particle systems. We have
been able to define the quantum mechanical operators equivalent to each
one of the different terms that constitute the classical spin and other
fundamental observables of the particle. Even a kind of ‘correspondence
principle’ has been announced as a result of their formal expressions.

To be consistent with the quantum mechanical framework, the classi-
cal description of a Dirac particle or, basically, of an electron or a quark,
suggests that the charge of the particle is moving in circles at the speed
of light around the center of mass. No other classical model produced
by this formalism fulfils Dirac’s equation when quantized.

This feature of a point charge moving at the speed of light is not con-
tradictory with Special Relativity if the center of mass of the system can
never reach this velocity. Nevertheless this raises new questions. One
important question is the problem of radiation. The charge of a free
spinning particle has an accelerated but radiationless motion, because
mechanical observables like energy, linear momentum and spin are con-
served. Radiation must be related to the acceleration of the center of
mass, and perhaps to the corresponding motion of the center of charge,
i.e., to the change of the above mechanical attributes. Therefore, the
analysis of radiation reaction has to be revisited.

There are no great differences between the non-relativistic and relati-
vistic approach, as far as the pictorial description of elementary particles
is concerned. Because the basic variables are the same the spin observ-
ables have the same basic form, although Lorentz invariance gives rise
to more complicated analytical expressions in the relativistic framework.
There is no non-relativistic limit of the model that satisfies Dirac’s equa-
tion. Nevertheless, for specific purposes, simple non-relativistic models
with zitterbewegung and rotation can be designed.

But at the same time the proposed formalism gives some hints for
its extension to include other kinematical groups. If matter, at the
elementary level, has more intrinsic properties than just mass and spin,
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this justifies that we have to look for larger symmetry groups than the
Galilei or Poincaré groups. But not only as symmetry groups. We have
to obtain from them the new kinematical variables necessary to describe
the additional information we are searching for. This is another open
task and deserves more work.

Isospin conservation, in a quantum field theory context, is considered
as a dynamical symmetry instead of a kinematical one because it is re-
lated to an SU(2) local gauge invariance of the interaction Lagrangian. A
glance at the invariance under a local rotation group of a free Lagrangian
has given the possibility of using local angular variables to describe the
internal orientation, but considered as new variables that remain invari-
ant under the spatial rotation group. We are not sure whether the new
observables can be related with isospin, although they satisfy the same
commutation relations as the isospin operators and commute with trans-
lations. But invariance under this group restricts a little bit more the
kind of suitable Lagrangians for elementary particles.

The whole approach is independent of the kinematical group which
we use to define the basic symmetries of the physical system. The more
complex the kinematical group the more restricted are the kind of mod-
els that can be depicted, because of the greater number of constraints
imposed by the symmetry principles. But at the same time the model
will be described by more variables thus showing a more complex or
richer structure.

Some of the perspectives the formalism suggests have been presented
as conjectures. In some cases, one of the reasons has been the com-
putational difficulties for obtaining analytical solutions. In others, the
possibility of finding even a convergent numerical routine. There are still
many open questions. Our hope is that the application of the formalism
to old and new problems will necessarily produce corrections to improve
our understanding of some physical phenomena.
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